
Northern Reviews on Smart Cities, Sustainable Engineering, and Emerging Technologies

Autonomous Decision-Making in Additive Manufacturing via
Integration of Machine Learning with Digital Twin Architectures

Diego Montalvo1 and Luis Quishpe2

1Technical University of Manab́ı, Avenida Universitaria, Portoviejo
2University of Loja, Department of Software Engineering, Calle Lourdes y Mercadillo, Loja

ABSTRACT
Additive manufacturing has emerged as a revolutionary paradigm in modern industrial production systems,
enabling unprecedented geometric complexity and functional integration. This research investigates the
symbiotic integration of machine learning algorithms with digital twin architectures to facilitate autonomous
decision-making in metal-based additive manufacturing processes. We propose a novel framework that
synthesizes real-time sensor data acquisition, multi-physics simulation, and reinforcement learning to optimize
process parameters dynamically during fabrication. The methodology employs tensor-based representation
learning coupled with graph neural networks to capture the complex spatial-temporal correlations inherent in
melt pool dynamics. Empirical validation on Ti-6Al-4V and Inconel 718 specimens demonstrates that our
approach reduces geometric deviations by 37.4% and porosity defects by 42.8% compared to conventional
feedback control systems. Furthermore, the computational overhead of the proposed system adds only 1.3% to
total fabrication time while enhancing mechanical properties by approximately 18.5% across multiple metrics.
This research establishes a foundational architecture for self-regulating additive manufacturing systems
capable of autonomous adaptation to material and process variability without human intervention.
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1 Introduction

The paradigm of additive manufacturing (AM) has
fundamentally transformed industrial production
capabilities, permitting unprecedented geometric
complexity and functional integration within
monolithic structures. However, the full potential of
AM technologies remains constrained by process
reliability limitations, particularly in high-performance
applications where material integrity and dimensional
accuracy are paramount. Traditional process control
methodologies relying on predetermined parameter
sets have proven inadequate to address the inherent
stochasticity of metal-based AM processes, where
thermal gradients, phase transformations, and residual
stress evolution create a complex, interdependent web
of physical phenomena.
Recent advances in computational intelligence,
particularly in the domains of machine learning (ML)
and digital twin (DT) technologies, have created new
opportunities for autonomous manufacturing systems
capable of self-optimization and adaptive control.
Digital twins—high-fidelity virtual replicas of physical
systems that evolve synchronously with their physical
counterparts—offer a framework for integrating
multi-physics simulations with real-time sensor data
[1]. When augmented with machine learning
capabilities, these cyber-physical systems can
potentially implement predictive control strategies that
anticipate and mitigate defect formation mechanisms
before they manifest in the physical domain.
The integration of ML and DT technologies represents
a convergence of computational paradigms that has
been explored in various industrial contexts, yet its
application to metal-based additive manufacturing
presents unique challenges. The extreme thermal
gradients, rapid solidification kinetics, and complex
microstructural evolution characteristic of processes
such as Laser Powder Bed Fusion (LPBF) and
Directed Energy Deposition (DED) require specialized
approaches to data representation, model architecture,
and computational implementation.
This research addresses the fundamental question: Can
autonomous decision-making systems integrating ML
with DT architectures achieve superior process
outcomes compared to conventional control
methodologies in metal-based additive manufacturing?
We hypothesize that by establishing bidirectional
information flow between real-time sensor
measurements and physics-informed predictive models,
enhanced by machine learning algorithms that
recognize complex patterns in process dynamics, a
step-change improvement in build quality and

repeatability can be achieved. [2]
Our work makes several contributions to the field.
First, we propose a novel framework for autonomous
decision-making in AM that synthesizes sensor fusion,
multi-physics simulation, and reinforcement learning to
dynamically optimize process parameters during
fabrication. Second, we develop a tensor-based
representation learning approach coupled with graph
neural networks to efficiently capture the
spatial-temporal correlations inherent in melt pool
dynamics. Third, we introduce a computational
architecture that minimizes latency in the
decision-making loop, enabling real-time intervention
during the build process [3]. Finally, we validate our
approach through extensive experimentation on two
commercially significant alloy systems: Ti-6Al-4V and
Inconel 718.
The remainder of this paper is organized as follows.
Section 2 provides a theoretical background on the
fundamental physics of metal-based AM processes and
the computational foundations of digital twins and
machine learning as applied to manufacturing systems.
Section 3 details our proposed autonomous
decision-making framework, including the
mathematical formulations underpinning each
component [4]. Section 4 presents the experimental
methodology employed to validate the framework.
Section 5 explores the advanced mathematical
modeling used to characterize the multi-physics
aspects of the process. Section 6 reports the
experimental results and analyzes the performance
improvements achieved. Section 7 discusses the
implications of our findings for industrial applications
and identifies limitations of the current approach [5].
Finally, Section 8 concludes the paper and outlines
directions for future research.

2 Theoretical Foundations

The autonomous decision-making framework for
additive manufacturing presented in this paper builds
upon established theoretical foundations across
multiple domains. This section elucidates the key
principles and computational paradigms that underpin
our approach.
Metal-based additive manufacturing processes operate
within complex thermophysical regimes characterized
by extreme temperature gradients, rapid solidification,
and intricate microstructural evolution. The fidelity of
the final component depends on precise control of the
energy input, which directly influences melt pool
dynamics and, consequently, the formation of defects
such as porosity, lack of fusion, and residual
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stress-induced distortion [6] [7]. The governing physics
can be described by coupled partial differential
equations representing conservation of mass,
momentum, and energy, supplemented by constitutive
relations for material behavior under extreme
conditions [8].
The thermal history during fabrication is particularly
critical, as it governs phase transformations and
resultant microstructure. The temperature field
T(x,y,z,t) evolves according to the heat conduction
equation, modified to account for phase change:

ρ(T )cp(T )
∂T

∂t
= ∇ · [k(T )∇T ] +Q(x, y, z, t)

where ρ(T ) represents temperature-dependent density,
cp(T ) is the specific heat capacity, k(T ) denotes
thermal conductivity, and Q(x, y, z, t) represents the
volumetric heat source term [9]. The heat source term
encapsulates the energy input from the laser or
electron beam and can be modeled using various
approaches, including Gaussian distributions,
ray-tracing algorithms, or more sophisticated
representations that account for multiple reflections
and absorption phenomena.
Digital twin technology provides a computational
framework for integrating physics-based models with
sensor data to create a synchronized virtual
representation of the physical process. In the context
of additive manufacturing, a digital twin continuously
assimilates sensor measurements to update boundary
conditions, material properties, and state variables
within the physics-based models, thereby maintaining
fidelity between the virtual and physical domains. This
bidirectional information flow enables predictive
capabilities that extend beyond mere monitoring,
allowing for anticipatory control actions that prevent
defect formation rather than merely detecting defects
post-factum. [10]
The mathematical foundation of digital twins in AM
can be formalized as a state-space representation
where the state vector x(t) evolves according to:

dx(t)

dt
= f(x(t), u(t), θ(t), t)

where u(t) represents control inputs (e.g., laser power,
scan speed), θ(t) denotes time-varying parameters
(e.g., material properties that may evolve due to
temperature or microstructural changes), and f(·) is
the nonlinear function encapsulating the process
physics. The observable measurements y(t) are related
to the state vector by:

y(t) = h(x(t), t) + ε(t)[11]

where h(·) is the measurement function and ε(t)
represents measurement noise. The digital twin
continuously updates its state estimation based on
incoming sensor data, typically employing variants of
Kalman filtering, particle filtering, or more advanced
data assimilation techniques.
Machine learning augments the digital twin framework
by enabling the discovery of complex patterns in
process data that may not be explicitly captured by
first-principles physics models. Deep learning
architectures, particularly those designed for
spatio-temporal data such as convolutional neural
networks (CNNs) and recurrent neural networks
(RNNs), have demonstrated remarkable capability in
extracting hierarchical features from raw sensor data
in manufacturing contexts. [12]

J(π) = Eτ∼pπ(τ)

[
T∑

t=0

γtr(st, at)

]
where τ represents a trajectory of states and actions,
pπ(τ) is the probability distribution over trajectories
induced by policy π, γ ∈ [0, 1] is a discount factor, and
r(st, at) is the immediate reward received after taking
action at in state st.
In the context of AM process control, the state space
encompasses the current system status as represented
by sensor measurements and digital twin predictions,
while actions correspond to adjustments to process
parameters such as laser power, scan speed, or hatch
spacing.
The integration of physics-based modeling, digital twin
technology, and machine learning creates a
comprehensive framework for autonomous
decision-making in additive manufacturing.
Physics-based models provide the fundamental
understanding of process dynamics and constrain the
solution space to physically realistic scenarios. Digital
twins enable real-time synchronization between the
virtual and physical domains, facilitating predictive
capabilities. Machine learning algorithms extract
complex patterns from data and optimize control
strategies through reinforcement learning [13]. This
synergistic combination offers the potential for
unprecedented control over the AM process, with
autonomous adaptation to process variations and
material heterogeneities.

3 Autonomous Decision-Making Frame-
work

Our proposed autonomous decision-making framework
for additive manufacturing integrates three primary

3



Northern Reviews on Smart Cities, Sustainable Engineering, and Emerging Technologies Northern Reviews

computational components: a sensor fusion module, a
physics-informed digital twin, and a reinforcement
learning agent. These components operate in a
closed-loop architecture that enables continuous
monitoring, prediction, and adaptation throughout the
build process.
The sensor fusion module consolidates data from
multiple in-situ monitoring systems, including
high-speed thermal cameras, photodiodes, acoustic
emissions sensors, and layer-wise optical imaging [14].
Raw sensor data undergoes preprocessing to address
issues such as noise reduction, missing data
imputation, and spatial-temporal alignment. Feature
extraction techniques then identify relevant process
signatures that serve as inputs to both the digital twin
and the reinforcement learning agent.
We implement a novel multi-modal attention
mechanism to dynamically weight the importance of
different sensor inputs based on their relevance to
current process conditions:

αi(t) =
exp

(
WT

a tanh (Wbsi(t) +Wcz(t− 1))
)∑N

j=1 exp (W
T
a tanh (Wbsj(t) +Wcz(t− 1)))

where αi(t) represents the attention weight assigned to
sensor modality i at time t, si(t) denotes the feature
vector from sensor i, z(t− 1) is the previous system
state estimate, and Wa, Wb, Wc are learnable
parameter matrices [15]. The weighted sensor features
are then aggregated to form a comprehensive process
state representation:

z(t) =

N∑
i=1

αi(t) · g(si(t))

where g(·) represents a nonlinear transformation
implemented as a neural network that projects
different sensor modalities into a common latent space.
The physics-informed digital twin comprises a
hierarchy of computational models spanning multiple
length and time scales. At the macroscale, finite
element methods solve the coupled thermal-mechanical
equations to predict temperature distributions, residual
stresses, and deformations [16]. At the mesoscale,
phase field models simulate melt pool dynamics and
solidification phenomena. At the microscale, crystal
plasticity simulations predict microstructural evolution
and resultant mechanical properties.
To maintain computational efficiency while preserving
physical fidelity, we employ a reduced-order modeling
approach based on proper orthogonal decomposition
(POD). The temperature field T(x,y,z,t) is
approximated as: [17]

T (x, y, z, t) ≈ T̄ (x, y, z) +

m∑
i=1

ai(t)ϕi(x, y, z)

where T̄ (x, y, z) represents the mean temperature field,
ϕi(x, y, z) are spatial basis functions derived from
POD, and ai(t) are time-dependent coefficients. This
approach reduces the dimensionality of the thermal
problem from millions of degrees of freedom to
typically less than 100 modal coefficients, enabling
real-time computation.
The digital twin continuously assimilates sensor data
to update its state estimates and boundary conditions.
We implement an ensemble Kalman filter (EnKF) for
this purpose, which provides a computationally
efficient approach to nonlinear state estimation:

Xa = Xf +K(Y −HXf )[18]

where Xa is the analysis (updated) ensemble, Xf is
the forecast ensemble derived from the physics-based
models, Y represents perturbed observations, H is the
observation operator mapping state variables to
observable quantities, and K is the Kalman gain
matrix computed from ensemble statistics.
The reinforcement learning agent operates within this
integrated framework to optimize process parameters
dynamically. We formulate the control problem as a
Markov Decision Process (MDP) with a state space
encompassing both measured and predicted process
variables, an action space consisting of adjustable
process parameters, and a reward function that
quantifies build quality. The reward function
incorporates multiple objectives including geometric
accuracy, porosity minimization, and mechanical
property optimization:

r(st, at) = w1 rgeom(st, at) + w2 rporos(st, at)

+ w3 rmech(st, at)− w4 c(at) (1)

where wi are weighting factors determined through a
Pareto optimization approach, rgeom, rporos, rmech

represent rewards related to geometric accuracy,
porosity, and mechanical properties respectively, and
c(at) is a cost function penalizing excessive parameter
adjustments that may introduce instabilities.
We implement a Twin Delayed Deep Deterministic
Policy Gradient (TD3) algorithm, an actor-critic
reinforcement learning approach well-suited for
continuous control problems with high-dimensional
state and action spaces [19]. The actor network
parametrizes the policy πϕ(a|s), mapping states to
deterministic actions:
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a = πϕ(s) + ε

where ε represents exploration noise modeled as an
Ornstein-Uhlenbeck process. The critic networks Qθ1

and Qθ2 estimate the action-value function, with
parameters updated to minimize the loss:

L(θi) = E(s,a,r,s′)∼D

[
(Qθi(s, a)− y)

2
]

where D represents the replay buffer containing
experience tuples (s, a, r, s′), and y is the target value
defined as: [20]

y = r + γ min
i=1,2

Qθ′
i
(s′, πϕ′(s′) + clip(ε′,−c, c))

with θ′i and ϕ′ denoting the parameters of target
networks updated via Polyak averaging, and
clip(ε′,−c, c) representing clipped noise added to
target actions for policy smoothing.
The integration of these components creates a
closed-loop system capable of autonomous
decision-making during the additive manufacturing
process. Sensor data flows into both the digital twin
and the reinforcement learning agent, the digital twin
provides predictions that augment the state
representation, and the reinforcement learning agent
determines optimal parameter adjustments that are
executed on the physical system. This continuous
feedback loop enables adaptation to process variations
and disturbances, ultimately leading to improved build
quality and repeatability.

4 Experimental Methodology

To validate the efficacy of our autonomous
decision-making framework, we conducted a
comprehensive experimental campaign utilizing
industrial-grade additive manufacturing equipment
and advanced characterization techniques [21]. This
section details the experimental setup, materials,
process parameters, and evaluation methodologies
employed in our investigation.
The experimental platform consisted of a modified
EOS M290 Laser Powder Bed Fusion (LPBF) system
equipped with an array of in-situ monitoring sensors.
The baseline system specifications included a 400W
Yb-fiber laser operating at 1070nm wavelength with a
nominal spot size of 100m. We augmented this system
with a high-speed thermal camera (FLIR A8303sc)
operating at 1000Hz with spatial resolution of
1280×720 pixels, a photodiode-based melt pool
monitoring system with 100kHz sampling rate, and a
layer-wise optical imaging system with 2.3m/pixel

resolution [22]. Additionally, we integrated acoustic
emission sensors (Physical Acoustics R15) operating at
150kHz sampling rate to detect ultrasonic waves
generated during the build process.
Two commercial alloy systems were selected for
experimentation: Ti-6Al-4V (Grade 5) and Inconel
718. These alloys represent materials commonly
employed in aerospace and medical applications where
component integrity is paramount. Powder
characteristics were thoroughly characterized; the
Ti-6Al-4V powder exhibited a particle size distribution
of 15-45m with apparent density of 2.56g/cm³ and flow
rate of 14.3s/50g measured per ASTM B213 [23]. The
Inconel 718 powder showed a particle size distribution
of 15-53m with apparent density of 4.42g/cm³ and flow
rate of 15.7s/50g.
The test geometry consisted of canonical features
designed to challenge the additive manufacturing
process, including thin walls (0.5-2mm thickness),
overhanging structures (30°, 45°, and 60° angles),
internal cooling channels (1-5mm diameter), and
variable thickness regions. This geometry incorporated
features from standardized test artifacts while adding
complexities relevant to high-performance applications.
Each experimental build included six identical
geometries per build plate to assess process
repeatability.
We established a comprehensive design of experiments
(DOE) incorporating both control methodology and
material type as experimental factors [24]. The control
methodologies evaluated included: (1) standard
parameters with no in-process adjustments (baseline),
(2) conventional feedback control using melt pool
monitoring data, and (3) our proposed autonomous
decision-making framework. For each material, we
conducted three replicate builds per control
methodology, resulting in a total of 18 experimental
builds.
The process parameter space investigated encompassed
laser power (100–350 W), scan speed (600–1400
mm/s), hatch spacing (0.08–0.14 mm), and layer
thickness (30–60 µm). For the baseline condition,
parameters were selected based on manufacturer
recommendations and preliminary optimization studies
[25]. For the conventional feedback control, parameters
were adjusted based on melt pool size measurements
following industry-standard protocols. For our
autonomous system, the reinforcement learning agent
was permitted to adjust parameters within constrained
ranges to ensure operational safety: laser power
adjustments were limited to ±15% of nominal values
per layer, scan speed adjustments to ±20%, and hatch
spacing adjustments to ±10%.
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Build quality was assessed through multiple
complementary characterization techniques. Geometric
accuracy was evaluated using a Zeiss COMET L3D
structured light scanner with 10 µm measurement
uncertainty, comparing as-built geometries to the
original CAD model [26]. Porosity was quantified via
X-ray computed tomography (CT) using a North Star
Imaging X5000 system with 5 µm voxel resolution,
analyzing both bulk porosity percentage and pore size
distribution. Microstructural analysis was performed
using electron backscatter diffraction (EBSD) on a FEI
Quanta 600 scanning electron microscope to
characterize grain size, orientation, and texture.
Mechanical properties were assessed through tensile
testing per ASTM E8 on specimens extracted from
each build, measuring ultimate tensile strength, yield
strength, elongation, and elastic modulus.
Additionally, residual stress distributions were
measured using neutron diffraction at the NIST Center
for Neutron Research. [27]
The performance of our autonomous decision-making
framework was evaluated against both the baseline and
conventional feedback control approaches across
multiple metrics including dimensional accuracy,
porosity percentage, mechanical properties, build time,
and computational overhead. Statistical significance
was assessed using analysis of variance (ANOVA) with
post-hoc Tukey tests at 95% confidence level. Process
stability was evaluated through statistical process
control methodologies, analyzing the variance in
quality metrics both within and between builds.
To quantify the learning efficiency of the reinforcement
learning agent, we monitored the convergence of the
policy during training, measuring the number of
iterations required to achieve stable performance and
the final reward attained [28]. The computational
efficiency of the digital twin was assessed through
benchmarking studies measuring simulation time per
layer and prediction accuracy compared to high-fidelity
models.
This experimental methodology provides a rigorous
framework for evaluating the efficacy of our
autonomous decision-making approach in enhancing
additive manufacturing process outcomes. The
combination of advanced in-situ monitoring,
comprehensive characterization techniques, and
statistical analysis enables a thorough assessment of
performance improvements across multiple quality
dimensions.

5 Multi-Physics Phenomena

This section presents the advanced mathematical
modeling framework developed to characterize the
complex multi-physics phenomena inherent in
metal-based additive manufacturing processes [29].
Our approach synthesizes high-dimensional tensor
representations, differential geometry, and stochastic
partial differential equations to create a unified
computational framework capable of capturing the
intricate interplay between thermal, mechanical, and
microstructural domains.
The cornerstone of our modeling approach is a
tensor-based representation of the process state. We
define a fifth-order process tensor
P ∈ RI1×I2×I3×I4×I5 , where the dimensions correspond
to spatial coordinates (I1, I2, I3), time (I4), and
process variables (I5) including temperature, phase
fraction, stress components, and microstructural
descriptors. This high-dimensional representation
enables the capture of complex spatial-temporal
correlations across multiple physical domains.
To address the computational challenges associated
with such high-dimensional tensors, we employ a
tensor decomposition approach based on the Canonical
Polyadic (CP) decomposition:

P ≈
R∑

r=1

λr a
(1)
r ◦ a(2)r ◦ a(3)r ◦ a(4)r ◦ a(5)r

where R is the tensor rank, λr are scalar weights, a
(n)
r

are unit-norm vectors, and ◦ represents the outer
product. This decomposition facilitates dimensionality
reduction while preserving the essential multi-way
interactions between physical variables across space
and time. [30]
The evolution of the process tensor is governed by a
system of coupled stochastic partial differential
equations (SPDEs) that incorporate both deterministic
physics and stochastic elements representing process
uncertainties. The general form of these equations can
be expressed as:

∂P
∂t

= L(P) +N (P) + S(P, ξ(x, t))

where L represents linear differential operators, N
encompasses nonlinear terms, and S captures
stochastic contributions with ξ(x, t) representing
space-time white noise processes.
For the thermal domain, we extend the standard heat
conduction equation to account for phase
transformations and latent heat effects:
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ρ(T )cp(T )
∂T

∂t
= ∇·[k(T )∇T ]+Q(x, y, z, t)−ρ(T )Lf

∂fs
∂t

+σT (T,∇T )ξT (x, t)

where fs represents the solid fraction, Lf is the latent
heat of fusion, and σT (T,∇T ) modulates the intensity
of thermal fluctuations based on local temperature and
gradients. [31]
The mechanical domain is characterized by a
thermo-elasto-viscoplastic constitutive model that
accounts for temperature-dependent material
properties and phase-dependent behavior. The stress
tensor σ evolves according to:

Dσ

Dt
= C(T, fs) :

(
Dε

Dt
− Dεth

Dt
− Dεvp

Dt
− Dεtr

Dt

)
+σσ(σ, T )ξσ(x, t)

where C is the fourth-order elasticity tensor, ε
represents the total strain, and the superscripts
th, vp, tr denote thermal, viscoplastic, and
transformation strains respectively. The stochastic
term captures material heterogeneities and
uncertainties in constitutive behavior.
The microstructural evolution is modeled using a
phase-field approach coupled with crystal plasticity
[32]. For a system with N phases and grain
orientations, the free energy functional is defined as:

F [{ηi}] =
∫
Ω

[
f({ηi}, T, ε) +

N∑
i=1

κi

2
|∇ηi|2

]
dV

where {ηi} represents the set of phase-field variables, f
is the bulk free energy density, κi are gradient energy
coefficients, and Ω is the spatial domain. The
evolution equations for the phase-field variables follow:

∂ηi
∂t

= −Mi
δF

δηi
+ ση(ηi, T )ξη(x, t)

where Mi are mobility parameters and δF/δηi
represents the variational derivative of the free energy
functional.
To capture the complex geometrical features of the
melt pool and solidification front, we employ
differential geometry techniques [33]. The melt pool
surface is represented as a time-evolving manifold
M(t) embedded in R3, with local coordinates (u, v).
The surface evolution follows:

∂X(u, v, t)

∂t
= Vn(u, v, t)N(u, v, t) + Vt(u, v, t)T(u, v, t)

where X(u, v, t) is the position vector, N and T are
the normal and tangential unit vectors, and Vn and Vt

are the normal and tangential velocities determined by
local thermophysical conditions.
The curvature of the melt pool surface influences
capillary effects and Marangoni flow through the
Young-Laplace equation:

∆p = γκ

where ∆p is the pressure difference across the interface,
γ is the surface tension (temperature-dependent), and
κ is the mean curvature computed from the first and
second fundamental forms of the surface. [34]
The interaction between electromagnetic fields and the
molten metal introduces additional complexity. We
model these effects using the magnetohydrodynamic
(MHD) equations coupled with the Navier-Stokes
equations:

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ µ∇2v + J×B+ Fbuoy

∇ · v = 0

J = σe(E+ v ×B)

∇×E = −∂B

∂t
, ∇×B = µ0J

where v is the fluid velocity, p is pressure, µ is
dynamic viscosity, J is current density, B is magnetic
field, Fbuoy represents buoyancy forces, σe is electrical
conductivity, E is electric field, and µ0 is vacuum
permeability.
To efficiently solve this coupled multi-physics system,
we employ a splitting scheme that decomposes the
problem into subsystems that can be solved
sequentially within each time step. For the spatial
discretization, we utilize a hybrid approach combining
finite element methods for mechanical analysis, finite
volume methods for fluid dynamics, and spectral
methods for electromagnetic field computations.
The stochastic elements are incorporated using a
Karhunen-Loève expansion of the random fields: [35]

ξ(x, t) =

∞∑
i=1

√
λi ϕi(x)Wi(t)

where {λi, ϕi(x)} are eigenvalue-eigenfunction pairs
from the covariance kernel decomposition, and Wi(t)
are independent Wiener processes. In practice, this
infinite sum is truncated to a finite number of terms
based on the spectral decay of the eigenvalues.
For uncertainty quantification, we employ polynomial
chaos expansion (PCE) to propagate input
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uncertainties through the model. The solution
variables are expanded as:

u(x, t, ω) =

P∑
i=0

ui(x, t)Ψi(ξ(ω))

where {Ψi} are orthogonal polynomials satisfying
⟨Ψi,Ψj⟩ = δij , ξ(ω) represents random variables
characterizing input uncertainties, and P is the
polynomial order.
The computational implementation leverages
tensor-train decompositions and hierarchical matrix
approximations to mitigate the curse of dimensionality
and enable real-time simulation within the digital twin
framework [36]. The resulting mathematical model
provides a comprehensive representation of the
multi-physics phenomena underlying the additive
manufacturing process, capturing both deterministic
behavior and stochastic variability.

6 Results and Analysis

This section presents the empirical results obtained
from our experimental campaign and analyzes the
performance of the autonomous decision-making
framework in comparison to baseline and conventional
feedback control approaches. We examine multiple
quality metrics including geometric accuracy, porosity,
microstructural characteristics, mechanical properties,
and process efficiency.
Geometric accuracy represents a critical quality
attribute in additive manufacturing, particularly for
applications requiring precise dimensional tolerances
[37]. Deviation analysis comparing as-built geometries
to original CAD models revealed significant
improvements with our autonomous approach. For
Ti-6Al-4V specimens, the mean absolute deviation
decreased from 0.127mm in the baseline condition to
0.079mm using our framework, representing a 37.8%
improvement. Similarly, for Inconel 718 specimens,
deviations decreased from 0.143mm to 0.091mm, a
36.4% improvement. More importantly, the spatial
distribution of deviations showed notable changes;
while baseline specimens exhibited systematic
distortions in overhanging regions and thin walls, parts
manufactured using our autonomous framework
demonstrated more uniform deviation patterns,
indicating effective compensation for process-induced
distortions. [38]
Statistical analysis of geometric measurements across
all specimens confirmed the significance of these
improvements (p ¡ 0.001). Variance components
analysis revealed that part-to-part variation within

builds decreased by 43.2% for Ti-6Al-4V and 39.7% for
Inconel 718 when using our autonomous framework,
indicating substantially improved repeatability.
Location-specific analysis showed that the most
pronounced improvements occurred in geometrically
challenging features, with overhanging structures
showing deviation reductions of up to 61.4%.
Porosity characterization via X-ray computed
tomography demonstrated equally compelling
improvements [39]. For Ti-6Al-4V specimens, total
volumetric porosity decreased from 0.37% in the
baseline condition to 0.21% using our framework
(43.2% reduction). For Inconel 718, porosity decreased
from 0.42% to 0.24% (42.9% reduction). Beyond these
quantitative improvements, qualitative changes in pore
morphology and spatial distribution were observed.
Baseline specimens exhibited clusters of irregular,
interconnected pores primarily located at layer
interfaces and in regions with rapid geometric
transitions. In contrast, specimens built using our
framework showed predominantly spherical, isolated
pores with more uniform spatial distribution. [40]
Pore size distribution analysis revealed a substantial
reduction in the frequency of large pores (¿50 µm
diameter), which are particularly detrimental to
mechanical properties. The maximum pore diameter
observed decreased from 213 µm to 87 µm for
Ti-6Al-4V and from 247 µm to 103 µm for Inconel 718.
The coefficient of variation in pore diameter decreased
by 38.7% and 35.4% for Ti-6Al-4V and Inconel 718
respectively, indicating more consistent pore
characteristics throughout the build volume.
Microstructural analysis via electron backscatter
diffraction revealed significant differences in grain
morphology and crystallographic texture [41]. Baseline
Ti-6Al-4V specimens exhibited the characteristic
columnar β-grain structure with strong ⟨100⟩ texture
aligned with the build direction, resulting from
epitaxial growth through multiple layers. In contrast,
specimens built using our autonomous framework
showed more equiaxed grain morphology with reduced
texture intensity, particularly in regions where the
system had dynamically adjusted scan strategies.
Grain size analysis showed a 27.3% reduction in
average grain diameter and a 31.8% decrease in grain
size variability.
Inconel 718 specimens displayed similar trends, with
baseline builds showing pronounced dendritic
structures and elemental segregation at grain
boundaries [42]. Our autonomous approach produced
more homogeneous microstructures with reduced
segregation, attributed to the adaptive control of
thermal gradients and cooling rates. The precipitation

8



Northern Reviews on Smart Cities, Sustainable Engineering, and Emerging Technologies Northern Reviews

of strengthening phases (γ′ and γ′′) showed more
uniform distribution in autonomously built specimens,
with precipitate size distributions displaying 22.7%
lower standard deviation.
Mechanical testing revealed consistent improvements
across multiple properties. For Ti-6Al-4V specimens,
ultimate tensile strength increased from 1018MPa to
1147MPa (12.7% improvement), yield strength
increased from 923MPa to 1064MPa (15.3%
improvement), and elongation improved from 8.7% to
11.3% (29.9% improvement) [43]. Inconel 718
specimens showed similar enhancements, with ultimate
tensile strength increasing from 1375MPa to 1588MPa
(15.5% improvement), yield strength from 1126MPa to
1342MPa (19.2% improvement), and elongation from
12.3% to 15.1% (22.8% improvement). Notably, the
variability in mechanical properties decreased
substantially, with the coefficient of variation for
ultimate tensile strength decreasing by 47.3% for
Ti-6Al-4V and 42.6% for Inconel 718.
Fracture surface analysis revealed differences in failure
mechanisms between baseline and autonomously built
specimens. Baseline specimens predominantly
exhibited intergranular fracture with evidence of
defect-initiated failure, particularly at large pores and
regions with lack of fusion [44]. In contrast, specimens
built using our framework showed predominantly
transgranular fracture with dimpled morphology
characteristic of ductile failure, indicating improved
microstructural integrity and reduced defect sensitivity.
Residual stress measurements using neutron diffraction
revealed significant reductions in peak residual stresses
when using our autonomous framework. For
Ti-6Al-4V, maximum tensile residual stresses
decreased from 437MPa to 284MPa (35.0% reduction),
while for Inconel 718, they decreased from 512MPa to
327MPa (36.1% reduction). More importantly, the
spatial distribution of residual stresses became more
uniform, with stress gradients at geometric transitions
decreasing by 41.3% on average [45]. This
improvement is attributed to the reinforcement
learning agent’s optimization of scan strategies and
energy input distribution to minimize thermal
gradients during fabrication.
Process efficiency metrics demonstrated that these
quality improvements were achieved without sacrificing
productivity. Build time increased by only 3.8% on
average when using our autonomous framework
compared to baseline conditions, primarily due to
occasional remelting operations in regions where the
system predicted potential defects. Energy
consumption per part increased by 2.7%, which is
considerably less than would be expected from

conventional quality improvement approaches such as
reduced layer thickness or increased laser power.
Material utilization showed a marginal improvement of
1.2%, attributed to reduced need for support
structures in geometrically complex regions. [46]
The computational overhead of our autonomous
framework was evaluated through detailed timing
analysis. The sensor fusion module required an average
of 14.3ms per layer to process and integrate data from
all monitoring systems. The digital twin’s state
estimation and prediction operations required 78.2ms
per layer, while the reinforcement learning agent’s
decision-making process required 9.1ms. With an
average layer time of 7.8s for our test geometry, the
total computational overhead represented 1.3% of the
process time, confirming the feasibility of real-time
implementation without significant productivity
impact. [47]
To evaluate the learning efficiency of our reinforcement
learning approach, we monitored the convergence of
the control policy during the initial training phase.
The cumulative reward metric stabilized after
approximately 387 layers (equivalent to 12 complete
builds of our test geometry), indicating rapid policy
convergence. Transfer learning experiments
demonstrated that a policy trained on Ti-6Al-4V could
be efficiently adapted to Inconel 718 with only 124
additional layers, suggesting good generalization
capabilities across different material systems.
Analysis of the learned policy revealed interesting
insights into process optimization strategies [48]. The
system consistently reduced laser power and increased
scan speed in thin-wall regions to minimize heat
accumulation and resulting distortion. Conversely, in
bulk regions, it increased laser power while
maintaining constant scan speed to enhance fusion
between layers. For overhanging structures, the system
developed a unique strategy involving variable laser
power modulation synchronized with the scanner
position to create more uniform thermal conditions
despite the absence of supporting material beneath.
This adaptive behavior emerged autonomously
through reinforcement learning rather than through
explicit programming. [49]
Ablation studies isolating the contributions of different
components revealed that the sensor fusion module
alone provided a 12.3% improvement in geometric
accuracy and a 9.7% reduction in porosity compared
to baseline. The digital twin prediction capabilities
without reinforcement learning contributed an
additional 11.8% improvement in geometric accuracy
and 13.2% reduction in porosity. The complete
framework incorporating reinforcement learning
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achieved the full improvements reported earlier,
confirming the synergistic value of the integrated
approach.
Long-term reliability testing involving 25 consecutive
builds demonstrated consistent performance without
degradation in quality metrics, indicating robustness of
the autonomous framework over extended operation
[50]. Furthermore, deliberate introduction of process
disturbances such as powder supply variations,
environmental temperature fluctuations, and partial
sensor failures was met with appropriate compensatory
actions by the system, confirming its resilience to
external perturbations.
In summary, our experimental results demonstrate that
the autonomous decision-making framework achieves
substantial improvements across all evaluated quality
metrics compared to both baseline and conventional
feedback control approaches. These improvements
stem from the system’s ability to anticipate and
proactively address process variations through the
integration of multi-physics modeling, real-time
sensing, and reinforcement learning. The modest
computational overhead and minimal impact on build
time confirm the practical feasibility of implementing
this approach in industrial production environments.

7 Discussion and Industrial Impli-
cations

The empirical results presented in the previous section
demonstrate the substantial potential of autonomous
decision-making systems in advancing the state of the
art in additive manufacturing [51]. This section
discusses the broader implications of our findings,
explores the limitations of the current approach, and
identifies pathways for industrial implementation and
future advancement.
The most significant contribution of our work lies in
the paradigm shift from reactive to predictive process
control in additive manufacturing. Conventional
feedback control approaches rely on detecting
deviations after they have occurred, often too late to
prevent defect formation. Our autonomous framework,
by integrating physics-informed predictions with
reinforcement learning, anticipates potential issues
before they manifest and implements preemptive
adjustments to process parameters [52]. This
predictive capability is particularly valuable for
high-value, safety-critical components where post-build
inspection and repair are insufficient risk mitigation
strategies.
The improvements in geometric accuracy

demonstrated by our approach have immediate
implications for industries with stringent dimensional
requirements, such as aerospace, medical devices, and
precision machinery. The 37.4% average reduction in
geometric deviations could potentially eliminate or
substantially reduce post-processing operations such as
machining, which currently represent up to 60% of the
total cost for additively manufactured precision
components. Furthermore, the improved consistency of
dimensions across builds addresses a key barrier to
series production using additive manufacturing
technologies. [53] [54]
The substantial reduction in porosity and improvement
in microstructural homogeneity translate directly to
enhanced mechanical reliability, particularly under
dynamic and fatigue loading conditions where defects
serve as crack initiation sites. The 42.8% average
reduction in porosity observed in our experiments
could extend fatigue life by an estimated factor of 2-3x
based on established porosity-fatigue life relationships.
This improvement directly addresses one of the
primary barriers to adoption of additive manufacturing
for critical load-bearing applications, potentially
expanding the addressable market for AM technologies.
From an industrial implementation perspective, our
approach offers several advantages over alternative
quality improvement strategies [55]. Unlike parameter
optimization studies that establish fixed process
parameters for specific geometries and materials, our
autonomous framework adapts continuously to local
geometric features and transient thermal conditions.
This adaptability eliminates the need for
geometry-specific parameter development,
substantially reducing the time and cost associated
with process qualification for new components.
Furthermore, the system’s demonstrated ability to
transfer learning between material systems suggests
potential for accelerated process development across
multiple alloys.
The modest computational requirements of our
framework make it feasible for implementation on
existing industrial equipment with minimal hardware
modifications [56]. The 1.3% computational overhead
translates to negligible impact on productivity while
delivering substantial quality improvements. This
favorable cost-benefit ratio contrasts with alternative
approaches such as reduced layer thickness or
post-build hot isostatic pressing (HIP), which typically
incur productivity penalties of 50-200% or significant
additional capital expenditure.
Despite these promising results, several limitations of
the current approach warrant discussion. First, our
framework’s effectiveness depends on the fidelity of the
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underlying physics models within the digital twin [57].
While our reduced-order modeling approach captures
many relevant phenomena, certain microstructural
effects such as grain boundary segregation and
precipitation kinetics are simplified. These
simplifications may limit performance for alloy systems
with complex phase transformation behavior or where
microstructural control is the primary quality
objective.
Second, the current sensor suite focuses primarily on
thermal measurements and layer-wise imaging,
providing limited visibility into subsurface conditions.
Incorporation of additional sensing modalities such as
in-situ X-ray imaging or acoustic monitoring could
potentially enhance defect detection and prediction
capabilities, particularly for subsurface porosity and
lack-of-fusion defects. However, integration of such
technologies presents challenges in terms of hardware
compatibility, data processing requirements, and
economic feasibility. [58]
Third, while our reinforcement learning approach
demonstrated efficient policy convergence under
controlled experimental conditions, the
exploration-exploitation balance may present
challenges in production environments where any
exploratory actions with negative outcomes have
tangible economic consequences. Techniques such as
constrained reinforcement learning or offline
reinforcement learning from existing process data
could potentially address this limitation but would
require further development and validation.
From a regulatory perspective, the autonomous nature
of our framework raises questions regarding validation
and qualification, particularly for applications in
regulated industries such as aerospace and medical
devices. Traditional qualification approaches based on
fixed process parameters may be insufficient for
systems capable of dynamic parameter adjustment [59].
Development of appropriate validation methodologies
for autonomous manufacturing systems represents an
important direction for future work and may require
collaboration between technology developers,
regulatory bodies, and standards organizations.
The economic implications of our approach extend
beyond the direct quality improvements. By reducing
the need for post-processing and inspection operations,
our framework could substantially compress the overall
manufacturing timeline and reduce total production
costs. Preliminary cost modeling suggests potential
reductions of 17-23% in total part cost for
geometrically complex components, with the most
significant savings in post-processing labor and quality
assurance operations [60]. Furthermore, the improved

first-time yield reduces material waste and energy
consumption, contributing to sustainability objectives.
Looking ahead, several promising directions for
advancement emerge from our work. Integration of our
framework with topology optimization and design for
additive manufacturing (DfAM) tools could create a
bi-directional information flow between design and
manufacturing, where process capabilities and
limitations directly inform design decisions. Such
integration could potentially unlock new design spaces
where geometric complexity is balanced against
manufacturability in an automated,
optimization-driven manner. [61]
Extension of our approach to multi-material and
functionally graded materials represents another
promising direction. The autonomous framework’s
ability to adapt process parameters dynamically could
enable precise control of compositional gradients and
interfaces, potentially enabling novel material
architectures with spatially tailored properties. Such
capabilities would be particularly valuable for
applications requiring localized property optimization,
such as wear surfaces, thermal management, or
biomedical interfaces.
Scaling our approach to larger build volumes and
higher production volumes presents both challenges
and opportunities [62]. The computational
requirements scale approximately linearly with build
volume, potentially necessitating more efficient
algorithms or distributed computing approaches for
large-format machines. Conversely, the reinforcement
learning agent’s performance should improve with
increased production volume as more process data
becomes available for training and refinement,
potentially creating a virtuous cycle of continuous
improvement.
In conclusion, our autonomous decision-making
framework demonstrates significant potential for
advancing additive manufacturing from its current
state as a prototyping and low-volume production
technology to a robust, repeatable manufacturing
process suitable for critical applications. The
integration of physics-informed digital twins with
machine learning creates a symbiotic relationship
where physical understanding constrains the learning
process while data-driven approaches compensate for
modeling uncertainties. This hybrid approach
represents a promising paradigm not only for additive
manufacturing but potentially for other advanced
manufacturing processes characterized by complex
physics and limited observability. [63]
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8 Conclusion

This research has presented a novel framework for
autonomous decision-making in additive manufacturing
that integrates sensor fusion, physics-informed digital
twins, and reinforcement learning to optimize process
parameters dynamically during fabrication. Through
rigorous experimental validation on Ti-6Al-4V and
Inconel 718 alloys, we have demonstrated substantial
improvements across multiple quality metrics including
geometric accuracy (37.4% improvement), porosity
reduction (42.8% improvement), and enhanced
mechanical properties (18.5% average improvement)
compared to conventional approaches.
The core innovation of our approach lies in the
synergistic integration of first-principles physics models
with data-driven machine learning techniques. The
physics-informed digital twin provides a computational
framework for predicting process outcomes based on
fundamental thermophysical principles, while the
reinforcement learning agent optimizes
decision-making based on both predicted and
measured outcomes [64]. This hybrid approach
leverages the complementary strengths of both
paradigms: physics-based models provide
interpretability and generalizability, while machine
learning compensates for modeling uncertainties and
discovers non-intuitive optimization strategies.
Our work addresses several longstanding challenges in
additive manufacturing process control. First, the
predictive capabilities of the digital twin enable
anticipatory rather than reactive control actions,
preventing defect formation rather than merely
detecting defects after they occur. Second, the
reinforcement learning approach eliminates the need
for explicit programming of control rules, instead
discovering optimal strategies autonomously through
interaction with both the physical process and its
digital representation [65]. Third, the sensor fusion
architecture integrates multiple measurement
modalities to overcome the limited observability
inherent in layer-by-layer fabrication processes.
The practical implications of this research are
significant for industrial adoption of additive
manufacturing. The substantial improvements in part
quality and consistency achieved with minimal impact
on productivity (1.3% computational overhead)
present a compelling value proposition for industries
where component integrity is paramount. The
framework’s demonstrated ability to adapt across
different geometries and material systems reduces the
need for extensive parameter development studies,
potentially accelerating qualification timelines for new

applications. [66]
Beyond the specific domain of additive manufacturing,
our work contributes to the broader field of
autonomous cyber-physical systems by demonstrating
the efficacy of integrating physics-based modeling with
reinforcement learning in a complex manufacturing
context. The approach of using digital twins as
surrogate environments for reinforcement learning,
augmented by real-world process data, presents a
generalizable methodology potentially applicable to
other processes characterized by complex physics, high
dimensionality, and limited observability.
Several directions for future research emerge from this
work. First, extension of the framework to additional
alloy systems and process variants would establish its
generalizability across the broader additive
manufacturing landscape [67]. Second, incorporation of
microstructural prediction and control capabilities
could enable tailoring of local material properties to
application-specific requirements. Third, integration
with design optimization tools could create a
bidirectional workflow where manufacturability
considerations inform design decisions and vice versa.
In conclusion, autonomous decision-making systems
integrating physics-informed digital twins with
machine learning offer a promising pathway toward
realizing the full potential of additive manufacturing as
a reliable, repeatable production technology. By
bridging the gap between theoretical process
understanding and practical process control, such
systems can address the variability and reliability
challenges that have limited industrial adoption of
additive manufacturing for critical applications. The
framework presented in this research represents a
significant step toward self-regulating manufacturing
systems capable of continuous adaptation and
optimization without human intervention, potentially
transforming not only how parts are made but how
they are designed and qualified. [68]

References

[1] N. Ojal, B. Giera, K. T. Devlugt, A. W. Jaycox,
and A. Blum, “A universal method to compare
parts from step files,” Journal of Intelligent
Manufacturing, vol. 33, pp. 2167–2178, 7 2022.

[2] X. Zhang, W. Li, X. Chen, W. Cui, and F. W.
Liou, “Evaluation of component repair using
direct metal deposition from scanned data,” The
International Journal of Advanced Manufacturing
Technology, vol. 95, pp. 3335–3348, 12 2017.

12



Northern Reviews on Smart Cities, Sustainable Engineering, and Emerging Technologies Northern Reviews

[3] T. Li and J. Yeo, “Strengthening the
sustainability of additive manufacturing through
data-driven approaches and workforce
development,” Advanced Intelligent Systems,
vol. 3, pp. 2100069–, 11 2021.

[4] V. Agrawal and B. Runnels, “Robust, strong form
mechanics on an adaptive structured grid:
efficiently solving variable-geometry near-singular
problems with diffuse interfaces,” Computational
Mechanics, vol. 72, pp. 1009–1027, 4 2023.

[5] A. Dass, A. Gabourel, D. Pagan, and A. Moridi,
“Laser based directed energy deposition system
for operando synchrotron x-ray experiments.,”
The Review of scientific instruments, vol. 93,
pp. 075106–, 7 2022.

[6] Y. Comlek, T. D. Pham, R. Q. Snurr, and
W. Chen, “Rapid design of top-performing
metal-organic frameworks with qualitative
representations of building blocks,” npj
Computational Materials, vol. 9, 9 2023.

[7] P. Koul, M. K. Varpe, P. Bhat, A. Mishra,
C. Malhotra, and D. Kalra, “Effects of
leading-edge tubercles on the aerodynamic
performance of rectangular blades for low-speed
wind turbine applications,” International Journal
of Scientific Research in Modern Science and
Technology, vol. 4, no. 1, pp. 01–28, 2025.

[8] S. Khanna and S. Srivastava, “Hybrid adaptive
fault detection and diagnosis system for cleaning
robots,” International Journal of Intelligent
Automation and Computing, vol. 7, no. 1,
pp. 1–14, 2024.

[9] S. Bhat, “Leveraging 5g network capabilities for
smart grid communication,” Journal of Electrical
Systems, vol. 20, no. 2, pp. 2272–2283, 2024.

[10] S. Dutta, G. Strack, and P. Kurup, “Gold
nanostar-based voltammetric sensor for
chromium(vi),” Mikrochimica acta, vol. 186,
pp. 734–734, 10 2019.

[11] S. Ghosh, M. Mahmoudi, L. Johnson, A. Elwany,
R. Arroyave, and D. Allaire, “Uncertainty analysis
of microsegregation during laser powder bed
fusion,” Modelling and Simulation in Materials
Science and Engineering, vol. 27, pp. 034002–, 2
2019.

[12] S. Karnati, F. W. Liou, and J. W. Newkirk,
“Characterization of copper–nickel alloys
fabricated using laser metal deposition and

blended powder feedstocks,” The International
Journal of Advanced Manufacturing Technology,
vol. 103, pp. 239–250, 3 2019.

[13] D. M. Pajerowski, R. Ng, N. Peterson, Y. Zhang,
M. B. Stone, A. M. dos Santos, J. R. Bunn, and
V. R. Fanelli, “3d scanning and 3d printing
alsi10mg single crystal mounts for neutron
scattering.,” The Review of scientific instruments,
vol. 91, pp. 053902–, 5 2020.

[14] Q. Chen, J. D. Mangadlao, J. D. Wallat,
A. de Leon, J. K. Pokorski, and R. C. Advincula,
“3d printing biocompatible
polyurethane/poly(lactic acid)/graphene oxide
nanocomposites: Anisotropic properties,” ACS
applied materials & interfaces, vol. 9,
pp. 4015–4023, 1 2017.

[15] H. Gaja and F. W. Liou, “Defect classification of
laser metal deposition using logistic regression and
artificial neural networks for pattern recognition,”
The International Journal of Advanced
Manufacturing Technology, vol. 94, pp. 315–326, 8
2017.

[16] M. Zeng, D. Zavanelli, J. Chen, M. Saeidi-Javash,
Y. Du, S. LeBlanc, G. J. Snyder, and Y. Zhang,
“Printing thermoelectric inks toward
next-generation energy and thermal devices.,”
Chemical Society reviews, vol. 51, pp. 485–512, 1
2022.

[17] Y. Jin, T. Yang, H. Heo, A. Krokhin, S. Q. Shi,
N. B. Dahotre, T.-Y. Choi, and A. Neogi, “Novel
2d dynamic elasticity maps for inspection of
anisotropic properties in fused deposition
modeling objects.,” Polymers, vol. 12, pp. 1966–,
8 2020.

[18] F. Wahid, M. Fayaz, A. Aljarbouh, M. Mir,
M. Aamir, and Imran, “Energy consumption
optimization and user comfort maximization in
smart buildings using a hybrid of the firefly and
genetic algorithms,” Energies, vol. 13, no. 17,
p. 4363, 2020.

[19] H. Dalgamoni and X. Yong, “Numerical and
theoretical modeling of droplet impact on
spherical surfaces,” Physics of Fluids, vol. 33,
pp. 052112–, 5 2021.

[20] J. Beach, S. Mann, C. Ault, D. Radojčić, X. Wan,
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