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ABSTRACT
The multiscale modeling of biofluid dynamics presents a formidable challenge due to the inherent complexity
of physiological systems, where interactions span molecular, cellular, tissue, and organ-level scales. This paper
systematically examines advanced numerical methodologies tailored to address these cross-scale phenomena,
focusing on their mathematical underpinnings, computational trade-offs, and physiological fidelity. We
critically evaluate continuum-based approaches, such as the Navier-Stokes equations with hybrid viscoelastic
constitutive models, against discrete particle methods, including dissipative particle dynamics and lattice
Boltzmann formulations. Special emphasis is placed on interface-capturing techniques like the immersed
boundary method and arbitrary Lagrangian-Eulerian frameworks for resolving fluid-structure interactions in
deformable biological tissues. Furthermore, we analyze homogenization strategies for bridging cellular-scale
phenomena—such as endothelial shear stress sensing—to macroscopic hemodynamic simulations. A
comparative assessment of monolithic versus partitioned coupling schemes reveals critical insights into
numerical stability and scalability for large-scale vascular simulations. The discussion extends to recent
advances in data-driven surrogate modeling, which synergize reduced-order physics with machine learning to
alleviate computational bottlenecks. By contextualizing these approaches against experimental validations in
vascular flow and pulmonary dynamics, this work provides a rigorous framework for selecting appropriate
multiscale strategies based on accuracy, efficiency, and target physiological observables.
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1 Introduction

Biological fluid dynamics operates across spatial and
temporal scales that can differ by multiple orders of
magnitude [1]. At the smallest scales, intracellular
processes and membrane mechanics unfold on
nanometer-length scales and microsecond timescales,
while whole-organ phenomena, such as blood
circulation in the human cardiovascular system, extend
over meters and can evolve over seconds to hours [2].
Traditional single-scale numerical approaches—be they
molecular dynamics at the nanometer level or
continuum Navier-Stokes models at the organ
level—often fail to capture emergent phenomena
arising from cross-scale couplings. For instance, the
initial stages of thrombus formation, governed by
platelet adhesion at the cellular scale, can dramatically
alter effective blood viscosity and rheology at the
macroscopic level. [3]
To address these challenges, multiscale modeling has
emerged as a promising paradigm. In one class of
approaches, referred to as hierarchical modeling,
fine-scale simulations (e.g., dissipative particle
dynamics or molecular dynamics) provide effective
parameters, such as viscosity or permeability, to a
coarser, continuum-scale model via homogenization [4].
However, this approach can break down when feedback
mechanisms from the macro scale significantly impact
the micro scale—exemplified by high-shear-rate flows
influencing cell membrane conformation [5]. Another
class of approaches, termed concurrent or on-the-fly
coupling, maintains simultaneous calculations at both
micro and macro scales within the same simulation
framework. While these methods promise higher
fidelity, their computational demands can be
prohibitive for large-scale organ-level simulations
unless specialized algorithms or high-performance
computing resources are employed. [6]
Mathematically, these problems often exhibit mixed
hyperbolic-parabolic character and can involve strongly
nonlinear constitutive relationships. Stabilized finite
elements, finite volumes, or lattice Boltzmann methods
are typically employed to handle advection-dominated
flows and ensure stability under complex boundary
conditions [7]. Additional complications arise when
modeling fluid-structure interactions (FSI) in
deformable tissues or cells, especially in the presence of
active stresses generated by biological processes such
as muscle contraction or ciliary beating. These
phenomena require specialized numerical coupling
schemes, such as the immersed boundary method or
arbitrary Lagrangian-Eulerian (ALE) frameworks, that
preserve accuracy near moving interfaces. [8]

This work aims to provide a unified treatment of these
diverse multiscale modeling methodologies, with a
particular focus on the mathematical formulations,
discretization strategies, and stabilization methods
required for robust simulations of biologically realistic
systems [9]. Through illustrative examples in vascular
networks, pulmonary airflow, and microvascular
endothelial dynamics, we offer guidance on selecting
and coupling models at different scales. We further
examine the emerging role of machine learning
techniques—such as neural-network-based
subgrid-scale (SGS) closures or surrogate modeling—to
reduce computational overhead while maintaining
essential multiscale fidelity. [10]
In what follows, we first establish key mathematical
equations and physical models that underpin
multiscale biofluid dynamics, from continuum
Navier-Stokes systems with viscoelastic stresses down
to discrete particle or agent-based frameworks. We
then discuss the challenges inherent to modeling
cellular and subcellular processes, placing particular
emphasis on membrane elasticity and stochastic gating
of ion channels [11]. Moving upward in scale, we
examine tissue-level and organ-level flow phenomena,
including pulmonary dynamics and arterial
hemodynamics, and detail how these continuum
models couple to fine-scale processes via
homogenization or explicit concurrency [12].
Afterward, we compare competing numerical
schemes—monolithic versus partitioned coupling,
immersed boundary versus ALE, lattice Boltzmann
versus finite elements—and highlight the trade-offs
between computational cost, numerical stability, and
accuracy. We conclude by identifying frontiers in
uncertainty quantification, GPU-accelerated
computing, and data-driven hybrid methods that
promise to shape the next generation of multiscale
biofluid simulations. [13]

2 Foundations of Multiscale Biofluid
Dynamics

Mathematical formalisms for multiscale biofluid
dynamics must capture macroscopic momentum and
mass conservation while accommodating the local
rheological complexities often introduced by
cellular-scale or molecular-scale behavior. One
canonical set of governing equations at the organ or
tissue level is the incompressible Navier-Stokes system:
[14]
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ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τ + fext,

∇ · u = 0,

where u is the velocity field, p is the pressure, ρ is the
(generally constant) fluid density, and fext represents
external body forces such as gravity or, in some
contexts, electromagnetic forces. The term τ is the
extra stress tensor, which may be purely Newtonian
(τ = 2µD with D = 1

2 (∇u+ (∇u)T )) or it may encode
more complex rheological laws:

τ = τ(u, γ̇, · · · ),

where γ̇ denotes the magnitude of the shear rate. In
viscoelastic or shear-thinning models such as
Carreau-Yasuda or Cross, the effective viscosity µ(γ̇)
can decrease significantly with increasing shear rate:

µ(γ̇) = µ∞ + (µ0 − µ∞)
[
1 + (λγ̇)2

]n−1
2 .

Hybrid Continuum-Viscoelastic Formulations.
In many biological flows—particularly in blood, mucus,
or other polymeric fluids—viscoelastic behavior is
essential. One widely used approach is to augment the
Navier-Stokes system with an evolution equation for
the polymeric stress τp. For example, the Oldroyd-B
model can be written as: [15]

∂τp
∂t

+ u · ∇τp = τp · (∇u) + (∇u)T · τp −
1

λ1

(
τp − ηpD

)
,

τ = τs + τp,

where λ1 is a relaxation time, ηp is the polymer
viscosity, and τs = 2ηsD is the solvent (Newtonian)
contribution. Similar forms exist for the Giesekus,
FENE-P, or Phan-Thien–Tanner (PTT) models, each
capturing different rheological phenomena such as
shear-thinning or strain-hardening. [16]
The Giesekus model introduces an additional nonlinear
stress term to account for anisotropic drag effects in
polymer solutions:

∂τp
∂t

+ u · ∇τp = τp · (∇u) + (∇u)T · τp −
1

λ1

(
τp − ηpD+ ατ2p

)
,

where α is a mobility parameter that influences
shear-thinning behavior [17]. In contrast, the FENE-P
model modifies the polymer stress evolution by
incorporating a finite extensibility parameter L that
bounds polymer elongation:

∂τp
∂t

+ u · ∇τp = τp · (∇u) + (∇u)T · τp −
1

λ1

(
τp − ηpD

1− tr(τp)
L2

)
.

This formulation is particularly effective for modeling
DNA-laden biofluids or polymer networks in mucus
transport [18]. The Phan-Thien–Tanner (PTT) model
further extends this framework by incorporating
strain-dependent relaxation effects: [19]

∂τp
∂t

+ u · ∇τp = τp · (∇u) + (∇u)T · τp−

1

λ1

(
τp − ηpD+

ϵ

λ1
tr(τp)τp

)
,

where ϵ modulates the strain-hardening response.
Each of these constitutive models introduces additional
computational challenges, necessitating specialized
numerical schemes such as logarithmic conformation
tensor methods or spectral element discretizations to
maintain stability in high-Weissenberg-number regimes
[20, 21]. Hybrid formulations that couple viscoelastic
models with generalized Newtonian viscosity
corrections have also been proposed to enhance
accuracy in simulations of blood flow, where both
viscoelasticity and shear-thinning must be
simultaneously accounted for.

Discrete Particle Representations. At micro- or
nano-scales, continuum approaches may no longer
suffice, especially if individual red blood cells,
platelets, or macromolecules must be resolved [22].
Particle-based methods such as dissipative particle
dynamics (DPD) or smoothed particle hydrodynamics
(SPH) discretize the fluid into mesoscale particles that
interact via forces designed to reproduce
Navier-Stokes-like behavior at larger scales. For
instance, in DPD: [23]

mi
dvi

dt
=
∑
j ̸=i

(
FC

ij + FD
ij + FR

ij

)
,

where FC
ij is a conservative force that can model local

repulsions or attractions, FD
ij is a dissipative force

proportional to velocity differences (reflecting viscous
effects), and FR

ij is a random force that simulates
thermal fluctuations. By tuning these parameters, one
can match desired viscosity and compressibility
properties. [24]
SPH, in contrast, represents the fluid as a set of
discrete particles carrying mass, momentum, and
sometimes energy, with interpolation kernels
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W (x− xj , h) defining local averaging over a smoothing
length h. The SPH approximation for the continuity
equation is given by:

dρi
dt

=
∑
j

mjvij · ∇Wij ,

where ρi is the density at a given particle position, mj

is the mass of neighboring particles, and vij = vi − vj

represents velocity differences. The corresponding
momentum equation takes the form: [25]

dvi

dt
= −

∑
j

mj

(
pi
ρ2i

+
pj
ρ2j

+Πij

)
∇Wij ,

where pi and pj are pressure values assigned to
particles and Πij represents artificial viscosity terms
required for numerical stability in high-shear flows.
The coupling of discrete particle data to continuum
fields often hinges on coarse-graining operators, C[·],
that map particle-scale forces or stress distributions
onto continuum variables:

τ(x, t) = C [{Fij}, {xi}, {vi}] .

In turn, the continuum velocity u(x, t) can feed back
into particle boundary conditions or flow fields,
enabling two-way coupling in concurrent simulations.
Hybrid models, where a Navier-Stokes solver governs
macroscopic flow while a DPD or SPH subdomain
resolves microscale interactions, have been employed to
simulate red blood cell aggregation, platelet adhesion,
and transport of drug-laden nanoparticles in blood
plasma. These multiscale approaches allow direct
incorporation of cellular-scale mechanics into
whole-organ hemodynamic simulations, capturing
non-Newtonian effects emerging from discrete particle
interactions. [26]

Stabilized Discretizations and Ill-Posedness.
Nonlinear coupling between micro- and macro-scales,
along with viscoelastic or shear-thinning laws, can
introduce ill-posedness or severe stiffness in the
governing PDEs [27]. For instance, combining strongly
convective flows (large Reynolds numbers) with nearly
elastic fluid behavior (high Deborah or Weissenberg
numbers) may lead to numerical instabilities, requiring
advanced stabilization. Residual-based stabilizations
such as SUPG (streamline-upwind Petrov-Galerkin)
add selective artificial diffusion along characteristic
directions: [28]∫

Ω

ρ(u · ∇u) · vh dΩ →
∫
Ω

ρ(u · ∇u) · vh dΩ

+
∑

K

∫
K
τSUPG(ρu · ∇Ru)(u · ∇vh),

where Ru is the momentum residual and τSUPG is a
stabilization parameter that depends on element size,
velocity magnitude, and time step. Without such
stabilizations, high-order methods or standard
Galerkin discretizations can develop oscillatory
solutions or fail to converge. [29]
In sum, constructing robust and accurate
mathematical foundations for multiscale biofluid
dynamics requires reconciling continuum PDEs for
momentum and mass conservation, discrete particle
formulations at smaller scales, and possibly additional
PDEs for viscoelastic or polymeric stresses. The
subsequent sections explore how these mathematical
foundations integrate with specific biological processes
and simulation frameworks at smaller (cellular) and
larger (tissue or organ) scales. [30]

3 Cellular and Subcellular Scale
Modeling

Biological cells embedded in a fluid environment
experience a wide array of forces, from external shear
stresses due to flow, to intracellular tension governed
by cytoskeletal dynamics and membrane elasticity [31].
Accurate modeling at these scales often necessitates
discrete or hybrid methods that can capture membrane
deformations, stochastic biochemical reactions, and
complex interactions between cells.

Membrane Elasticity and Particle-Based
Descriptions. One popular approach for red blood
cell (RBC) or platelet-scale modeling involves a
network of springs (or triangulated surfaces)
representing the cell membrane: [32]

Umembrane =
∑
⟨i,j⟩

ks
2

(
||xi−xj ||−l0

)2
+
∑
⟨α,β⟩

kb(θα,β−θ0)2,

where the first sum is over edges ⟨i, j⟩ connecting
membrane vertices xi and xj , each with a rest length
l0, and the second sum penalizes deviations in local
bending angles θα,β . The associated forces,
Fij = −∇xi

Umembrane, couple into either a dissipative
particle dynamics (DPD) framework or a continuum
fluid solver via immersed boundary methods.
In this representation, the membrane’s in-plane
elasticity emerges from the stretching term, ensuring
that local deformations remain within physiological
constraints. The bending energy term, in contrast,
governs the out-of-plane flexibility of the membrane,
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which is crucial for capturing the deformability of
RBCs under shear flow [33]. The parameters ks and kb
are typically tuned to match experimental
measurements of cell deformation indices and
membrane fluctuation spectra. [34]
A more sophisticated membrane model includes area
and volume conservation constraints, necessary for
modeling nearly-incompressible lipid bilayers:

Uarea =
kA
2
(A−A0)

2, Uvolume =
kV
2
(V − V0)

2,

where A and V are the instantaneous surface area and
volume, respectively, and A0, V0 are their reference
values [35, 36]. The parameters kA and kV enforce
global conservation properties, ensuring that the
membrane does not undergo unrealistic shrinkage or
expansion due to numerical artifacts.
To integrate these forces into a fluid solver, a
particle-based approach such as DPD is commonly
employed [37]. In DPD, the membrane vertices
interact with surrounding fluid particles via
hydrodynamic forces, allowing for a direct coupling
between the cellular structure and the surrounding
medium. This interaction is typically mediated
through a Langevin-like formalism, incorporating both
deterministic and stochastic forces: [38]

mi
dvi

dt
=
∑
j ̸=i

(FC
ij + FD

ij + FR
ij) + Fmembrane

i ,

where Fmembrane
i represents the elastic and bending

forces exerted by the membrane model.
Another widely used approach is to embed the
membrane model within a smoothed particle
hydrodynamics (SPH) framework, where the fluid
dynamics are solved using a Lagrangian description
[39]. In this case, the membrane particles carry
additional information, such as curvature and tension,
which influences their interaction with surrounding
fluid particles. By carefully tuning the interaction
kernels, SPH-based models can achieve accurate
representations of RBC and platelet deformation under
physiological shear conditions. [40]

Immersed Boundary Methods for Cell
Deformations. The immersed boundary (IB)
method provides a particularly elegant technique for
coupling elastic structures, like cell membranes or
filament networks, to an incompressible fluid. In this
framework, the membrane is represented by a set of
Lagrangian markers X(s, t), where s parameterizes the
membrane surface. These markers exert forces onto
the surrounding fluid, which in turn influences their

motion [41]. The governing equations for the IB
method are: [42]

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+µ∇2u+

∫
Γ

F(s, t) δ(x−X(s, t)) ds.

Here, the force F(s, t) is derived from the membrane
elasticity model and is distributed to the Eulerian grid
via a discrete Dirac delta function δ(x−X(s, t)). The
motion of the membrane markers is then updated by
interpolating the fluid velocity:

∂X

∂t
(s, t) =

∫
Ω

u(x, t) δ(x−X(s, t)) dx.

A key advantage of the IB method is that it allows for
complex boundary deformations without the need for
explicit mesh generation around moving structures
[43]. This is particularly important in simulations of
RBCs and platelets, which undergo extreme shape
changes as they traverse microvascular networks. The
IB method also naturally accommodates the effects of
fluid-structure interactions, including the formation of
membrane tethers and vesicle rupture under high shear
conditions. [44]
To ensure numerical stability in large deformation
regimes, specialized discretization techniques are
employed for the delta function. One common
approach is to use a regularized delta function, such
as: [45, 46]

δh(x) =
1

h3
ϕ
(x
h

)
ϕ
(y
h

)
ϕ
( z
h

)
,

where ϕ(r) is a smooth function that preserves
interpolation accuracy while preventing numerical
oscillations. [47]
The IB method can also be extended to incorporate
active cellular processes, such as cytoskeletal
remodeling and adhesion dynamics. For example, actin
polymerization forces at the leading edge of migrating
cells can be modeled by introducing additional source
terms in the force equation: [48]

Factin = kpolymer(X−X0),

where kpolymer represents the polymerization rate and
X0 is the reference position of the membrane. Such
formulations allow for the simulation of platelet
aggregation, leukocyte rolling, and endothelial cell
deformation in response to mechanical stimuli.
In hybrid computational models, IB techniques are
often coupled with continuum-based solvers for
non-Newtonian blood flow [49]. A typical example is
the combination of an IB membrane model with a
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finite element fluid solver using a Carreau-Yasuda
viscosity model: [50]

η(γ̇) = η∞ + (η0 − η∞) [1 + (λγ̇)a]
n−1
a .

This coupling allows for the accurate simulation of
shear-thinning effects in plasma while resolving
individual RBC dynamics. Further refinements include
multiscale coupling strategies, where molecular-scale
interactions (such as membrane protein dynamics) are
incorporated via coarse-graining techniques [51]. Such
approaches have been employed to model
malaria-infected RBCs, whose altered mechanical
properties significantly impact microcirculatory flow.
The combination of membrane elasticity models,
particle-based descriptions, and immersed boundary
formulations provides a powerful framework for
studying cell-scale hemodynamics [52]. By integrating
these techniques into hybrid numerical solvers,
researchers can achieve unprecedented resolution in
simulating the complex interplay between cellular
mechanics and blood flow. These advancements have
direct applications in understanding pathological
conditions such as sickle cell disease, clot formation,
and targeted drug delivery in microvascular networks.
[53]

Biochemical Transport and Reaction Kinetics.
Cells also sense and respond to their chemical
environment, leading to advection-diffusion-reaction
equations for signaling molecules such as adenosine
diphosphate (ADP) in platelet aggregation or Ca2+ in
muscle contraction. A typical PDE system might be:
[54]

∂c

∂t
+∇ · (cu) = D∇2c+R(c),

c(x, 0) = c0(x),

where c is the concentration of the signaling molecule,
D is the diffusion coefficient, and R(c) represents local
reaction kinetics (e.g., enzymatic production or decay
terms). At the cell boundary, boundary conditions can
encode fluxes dependent on receptor-ligand binding or
mechanochemical coupling. [55]

Stochastic Ion Channel Dynamics. Cellular
excitability, seen in cardiomyocytes or neurons, arises
from the stochastic gating of ion channels, frequently
modeled by a Hodgkin-Huxley framework with noise:

Cm
dV

dt
= Iext −

∑
i

gim
p
i h

q
i (V − Ei) + ξ(t),

where V is the transmembrane potential, gi is the
maximum conductance for ion channel type i, Ei is the
reversal potential, and ξ(t) is a stochastic term
capturing random channel openings/closings [56].
Coupling these cellular electrophysiology models to
fluid flow can be crucial for phenomena like
mechanotransduction in endothelial cells, where shear
stress modulates ion channel kinetics and thus affects
intracellular signaling pathways. [57]
The integration of these subcellular details into
larger-scale fluid simulations is challenging. One must
define appropriate coupling interfaces, ensuring that
mechanical stresses in the fluid update the cell
membrane state, while in turn, cell deformations or
secreted chemicals feed back into the local flow field
[58]. This concurrency may be updated at each time
step or in a loosely coupled manner if the timescales of
cell responses are much slower than the fluid dynamics.

4 Tissue and Organ-Level Fluid Dy-
namics

Moving from cellular microenvironments to tissues and
entire organs involves yet another leap in characteristic
length and time scales [59]. Two essential areas
illustrating this complexity are pulmonary airflow in
the lung and blood flow in large vascular networks,
such as coronary or cerebral arteries.

Pulmonary Airflow and Tissue Mechanics.
Breathing involves not only airflow within the
branching bronchial tree but also expansion and
contraction of alveolar sacs, whose walls exhibit
complex viscoelastic and surface tension behaviors [60].
A continuum approach for the lung parenchyma may
involve modeling alveolar tissue as a viscoelastic
material with a stress-strain relationship: [61, 62]

S(E, t) =
∂W

∂E
+

∫ t

0

G(t− τ)
∂E

∂τ
dτ,

where W is a hyperelastic strain-energy function, and
G captures stress relaxation effects. The viscoelastic
properties of lung parenchyma arise due to its
composition of extracellular matrix proteins, including
elastin and collagen, which contribute to both its
elastic recoil and time-dependent stress relaxation [63].
Alveolar walls are lined with a thin layer of pulmonary
surfactant, reducing surface tension and preventing
alveolar collapse, a phenomenon known as atelectasis.
The dynamics of surfactant distribution across the
alveolar interface can be described using transport
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equations coupled with the fluid dynamics of the
airway. [64]
Coupling alveolar tissue deformation to the fluid
equations in the bronchial tree can be achieved via an
Arbitrary Lagrangian-Eulerian (ALE) scheme: [65]

∂u

∂t

∣∣∣
X(x,t)

+
[(
u−w

)
· ∇
]
u = −1

ρ
∇p+ ν∇2u,

where w is the local mesh velocity of the moving
alveolar boundary and X(x, t) describes the mapping
from reference to current configuration. The ALE
framework allows for the tracking of the alveolar
boundary motion, which is essential in resolving the
interaction between airflow and lung parenchymal
deformation.
A comprehensive computational model of pulmonary
mechanics should account for the multi-scale nature of
the lung, spanning from the macroscopic airway tree to
the microscopic alveolar structures [66]. The airway
resistance to airflow can be estimated using the
Poiseuille law for laminar flow in small bronchioles:

R =
8µL

πr4
,

where R is the airway resistance, µ is the dynamic
viscosity of air, L is the airway length, and r is the
airway radius [67]. However, turbulence and secondary
flows in larger airways require a more complex
treatment, such as direct numerical simulation (DNS)
or large-eddy simulation (LES).
Incorporating regional heterogeneity in lung mechanics
is crucial for accurate simulation of pulmonary airflow
and tissue deformation [68]. Factors such as
gravity-dependent variations in alveolar expansion,
localized airway obstructions, and non-uniform
surfactant distribution introduce spatial complexity
into the lung’s mechanical behavior [69].
High-resolution imaging modalities, such as
four-dimensional computed tomography (4D-CT) and
hyperpolarized MRI, provide essential data for
validating computational models.

Coronary and Large-Vessel Hemodynamics.
Arterial blood flow in large vessels can be
approximated by the Navier-Stokes equations with
shear-thinning viscosity if necessary [70]. However,
when coupling to myocardial tissue for modeling
perfusion, one must solve the poroelastic Biot
equations:

∇ ·
(
σsolid − αp I

)
= 0,

∂ϕ

∂t
+∇ · q = 0,

q = −κ

µ

(
∇p− ρfg

)
,

where ϕ is the fluid porosity, κ is the permeability, and
p is the fluid pressure [71]. The stress σsolid in the solid
matrix couples to the fluid pressure p, and α is a
Biot–Willis parameter that accounts for fluid-solid
interaction.
In large arteries, the Windkessel effect plays a crucial
role in maintaining continuous blood flow despite the
pulsatile nature of cardiac output [72]. The compliance
of arterial walls enables energy storage during systole
and release during diastole, mitigating fluctuations in
blood pressure. The pressure-flow relationship in large
arteries can be approximated using a
lumped-parameter Windkessel model: [73]

P (t) = P0 +
Q(t)R

1 +RCd/dt
,

where P (t) is the arterial pressure, Q(t) is the
volumetric flow rate, R is the vascular resistance, and
C is the arterial compliance.
Coronary circulation presents additional complexities
due to the interaction between blood flow and
myocardial contraction [74]. During systole, the
intramyocardial pressure compresses coronary vessels,
impeding perfusion, whereas diastole is the primary
phase for coronary filling. This phenomenon
necessitates the use of time-dependent boundary
conditions in computational models of coronary
hemodynamics. [75, 76]
Myocardial microcirculation, governed by capillary and
venular flow, plays a vital role in oxygen delivery and
metabolic regulation [77]. The Krogh cylinder model
provides a simplified framework for understanding
oxygen diffusion from capillaries to surrounding
myocardial tissue. However, more sophisticated
computational approaches, such as multi-compartment
reaction-diffusion models, are often required to capture
the complex interaction between flow, metabolism, and
autoregulatory mechanisms. [78]
Accurate modeling of coronary hemodynamics has
important clinical implications, particularly in the
assessment of ischemic heart disease and the
optimization of revascularization strategies such as
coronary artery bypass grafting (CABG) and
percutaneous coronary intervention (PCI).
Hemodynamic simulations can aid in predicting the
functional significance of arterial stenoses and
optimizing treatment strategies for improved patient
outcomes. [79]

Multidimensional Reduced-Order Modeling.
In many practical applications, a full 3D simulation of
an entire vascular network is prohibitively expensive
[80]. Instead, 1D or 2D reduced-order models may be
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Parameter Typical Value Description

Lung compliance (CL) 0.2L/cmH2O Measure of lung elasticity, de-
fined as the change in volume per
unit pressure change.

Airway resistance (RA) 1.5 cmH2O/L/s Resistance to airflow, influenced
by airway diameter and air vis-
cosity.

Alveolar surface tension
(γ)

30mN/m (before surfac-
tant)

Determines the collapsing pres-
sure of alveoli, modified by sur-
factant to prevent atelectasis.

Table 1: Key physiological parameters influencing pulmonary airflow and alveolar mechanics.

Parameter Typical Value Description

Cardiac output (Q) 5 L/min Total volume of blood pumped
by the heart per minute.

Coronary blood flow (Qc) 250mL/min Blood flow through the coronary
circulation, supplying oxygen to
the myocardium.

Arterial compliance (C) 1.5mL/mmHg Ability of arteries to expand and
contract in response to pressure
changes.

Table 2: Key hemodynamic parameters relevant to large-vessel and coronary circulation.

used, especially for large-scale systemic circulation. A
common approach for 1D arterial pulse wave
propagation is: [81]

∂A

∂t
+

∂Q

∂x
= 0,

∂Q

∂t
+

∂

∂x

(Q2

A

)
+

A

ρ

∂p

∂x
= −fr

Q

A
,

where A(x, t) is the cross-sectional area of the vessel,
Q(x, t) is the volumetric flow rate, and the friction
term fr typically depends on viscosity. A constitutive
relationship relates p and A, e.g., [82]

p = pext + β
(√

A−
√
A0

)
,

where β encapsulates arterial stiffness. Such
reduced-order models can be coupled at inlets or
outlets of 3D simulations, effectively forming a
multiscale approach that saves computational cost
while preserving essential wave reflection dynamics.
[83]

Adaptive Mesh Refinement in Large Domains.
An additional strategy in large-organ simulations is
adaptive mesh refinement (AMR) or hp-adaptivity
[84]. Regions near stenoses or branch points may
feature steep velocity gradients and require local mesh

refinement or higher polynomial order. Meanwhile,
uniform refinement of the entire vascular domain is
avoided to reduce the overall computational burden
[85]. In parallel computing environments, dynamic
load balancing must be employed so that refined
regions do not cause severe load imbalances across
processor ranks.
Overall, bridging from the cellular scale to organ-level
mechanics necessitates careful attention to how
boundary conditions, constitutive laws, and model
assumptions scale up [86]. The next section will delve
into the numerical strategies that couple such
disparate scales, comparing monolithic approaches
with partitioned or hybrid methods and highlighting
the trade-offs in stability, complexity, and
computational cost. [87, 88]

5 Comparative Analysis of Multi-
scale Methodologies

Numerical coupling strategies for multiscale biofluid
problems can be broadly grouped into monolithic
(fully coupled) and partitioned (segregated) methods.
Each offers distinct advantages and challenges in terms
of numerical stability, scalability, and ease of
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implementation. [89]

Monolithic Coupling and Strongly Coupled
Systems. In monolithic approaches, one assembles a
global system of equations for all unknowns—fluid
velocities, pressures, structural displacements,
polymeric stresses, etc.—and solves them
simultaneously. This can be conceptualized as: [90][

A BT

B C

] [
∆u
∆d

]
= −

[
Ru

Rd

]
,

where u might represent fluid variables (including
velocities and pressures in a mixed formulation) and d
represents structural or additional state variables (e.g.,
conformation tensor, displacement in the alveolar
walls, RBC membrane deformation). The blocks A, B,
C stem from partial derivatives of the residual
function Ru,Rd. A Newton-Raphson approach can be
used to handle nonlinearities. While monolithic
coupling ensures that fluid-structure or fluid-polymer
interactions are resolved consistently at each iteration,
the Jacobian system can become extremely large and
ill-conditioned, requiring sophisticated linear solvers
and preconditioners (e.g., block factorization or
approximate Schur complements). [91]

Partitioned and Segregated Schemes. In a
partitioned scheme, one solves fluid and structural
problems separately, exchanging boundary conditions
at each sub-iteration or time step: [92]

u(k+1) = F
(
d(k)

)
, d(k+1) = S

(
u(k+1)

)
,

where F and S denote the fluid and structural solvers,
respectively. This approach can leverage existing
single-physics codes, but it risks instabilities such as
the added-mass effect in incompressible fluid-structure
systems, where the inertia of the fluid can destabilize
the structural update unless relaxation or
sub-iterations are introduced:

d(k+1) ← d(k) + ω
(
d(k+1) − d(k)

)
.

Choosing an optimal relaxation parameter ω is crucial
to ensure convergence and avoid oscillatory coupling or
divergence in strongly coupled regimes (e.g., flexible
valves in high-speed flow) [93]. Despite these potential
pitfalls, partitioned schemes are often more
computationally tractable for large-scale problems
because each subproblem can be solved by specialized
solvers optimized for fluid or structural equations.

Lattice Boltzmann Methods (LBM) in Biofluid
Applications. LBM has gained popularity for
simulating complex geometries and multi-phase flows,
thanks to its explicit stream-and-collide algorithm and
natural parallelization: [94]

fi(x+ ei∆t, t+∆t)− fi(x, t) = −
1

τ

(
fi − f eq

i

)
,

where fi represents particle distribution functions in
discrete velocity directions ei. Macroscopic fields such
as ρ,u are recovered through velocity-moment
summations of fi. Extensions of LBM to
non-Newtonian fluids often modify the collision
operator or local relaxation time τ to reflect local
shear-thinning [95]. Immersing complex moving
boundaries (e.g., valves or RBCs) can be handled with
bounce-back or interpolated boundary schemes,
though the fidelity near highly deformable interfaces
remains an active research area.

Hybrid Continuum-Particle Approaches.
Concurrent multiscale modeling sometimes combines a
continuum solver (finite elements or LBM) for the bulk
flow with a particle-based solver (DPD or molecular
dynamics) in regions requiring fine-scale resolution:
[96]

umacro(x, t) = H
(
{vi}

)
,

{vi} = G
(
umacro(x, t)

)
,

where H and G are upscaling and downscaling
operators that map particle velocities {vi} to
continuum fields umacro and vice versa. Momentum
conservation is enforced by exchanging forces at an
overlapping region or interface. While promising, these
methods introduce complexities in interface
consistency, parallel load balancing, and the design of
smooth bridging zones that avoid spurious reflections
of molecular waves at the continuum boundary. [97]

Machine-Learned Surrogate Models. To reduce
computational overhead, especially when bridging
large scale differences, data-driven surrogates or
reduced-order models (ROMs) can approximate the
fine-scale physics. For example, one might train a
neural network Nθ to emulate the subgrid-scale stress:

τSGS ≈ Nθ

(
u,∇u,Re, . . .

)
,

which can then be inserted into a coarse mesh
simulation [98]. A distinct advantage is that the
surrogate can be trained offline using high-fidelity
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data, potentially from experimental measurements
(e.g., particle image velocimetry) or from expensive
microscale simulations [99]. However, ensuring
generalization beyond the training set remains a
challenge, especially when the flow regime changes
significantly.
In summary, no single method unequivocally
outperforms all others in multiscale biofluid
applications [100]. Rather, the choice depends on the
physics of interest (e.g., degree of compressibility,
viscoelastic timescales, presence of large deformations),
the geometry (e.g., complex vascular networks vs.
simpler chamber flows), and available computational
resources [101]. Monolithic approaches can offer robust
coupling but may become intractable at scale;
partitioned methods are more modular but require
careful stabilization and iteration; and hybrid
continuum-particle schemes can capture microscopic
detail but risk large overhead [102, 103]. Data-driven
surrogates further enrich the landscape by alleviating
some of the computational burdens, albeit at the
expense of requiring extensive training datasets.

6 Conclusion

Multiscale biofluid modeling stands at the confluence
of applied mathematics, computational physics, and
biological sciences, offering a powerful framework for
understanding the complex, hierarchical organization
of physiological flows [104]. This intricate field must
reconcile disparate spatial and temporal scales, ranging
from molecular diffusion and cellular mechanics to
whole-organ hemodynamics and systemic circulation.
Each level of organization introduces distinct modeling
challenges, requiring tailored mathematical
representations and numerical schemes [105]. The
balance between accuracy, efficiency, and
interpretability becomes crucial, as models must be
both biologically faithful and computationally feasible.
This investigation highlights key themes that have
emerged in the pursuit of robust and scalable
multiscale methodologies, including trade-offs between
model fidelity and computational cost, challenges in
numerical stability and coupling, opportunities in
data-driven acceleration, and the indispensable role of
verification and validation. [106]
At the smallest scales, particle-based methods such as
dissipative particle dynamics (DPD), smoothed
particle hydrodynamics (SPH), and molecular
dynamics (MD) provide high-fidelity representations of
fluid-structure interactions at the subcellular level
[107]. These approaches are particularly adept at
capturing complex microscale rheological phenomena,

such as red blood cell (RBC) deformation, membrane
fluctuations, and macromolecular transport. However,
their applicability is constrained by high
computational costs, limiting their ability to extend to
larger biological domains [108]. In contrast,
continuum-based models—such as the Navier-Stokes
equations for macroscopic flow or homogenized
constitutive laws for blood rheology—offer tractable
representations at larger scales but risk neglecting
critical microscale heterogeneities. The challenge lies
in bridging these descriptions through multiscale
coupling strategies, such as domain decomposition,
heterogeneous multiscale methods (HMM), or hybrid
particle-continuum schemes [109]. Ensuring numerical
stability and consistency across these couplings is a
nontrivial task, requiring specialized interface
conditions and coupling operators. [110]
A fundamental limitation in high-fidelity modeling is
the computational cost associated with fully resolving
all scales concurrently. Adaptive meshing, multigrid
techniques, and reduced-order modeling (ROM)
approaches provide avenues to mitigate this burden
[111]. For example, adaptive finite element methods
(AFEM) can dynamically refine regions of interest,
such as boundary layers near vessel walls, while
coarsening elsewhere to reduce the overall
computational expense. Similarly, ROM techniques,
such as proper orthogonal decomposition (POD) or
dynamic mode decomposition (DMD), extract
dominant flow features from high-fidelity simulations,
enabling reduced-order representations that retain key
physical characteristics [112]. While these approaches
enhance efficiency, they must be carefully designed to
avoid introducing spurious numerical artifacts or losing
essential biomechanical details.
The coupling of different physical processes introduces
additional numerical challenges [113]. Blood flow, for
instance, involves tightly coupled fluid-structure
interactions (FSI) with viscoelastic vessel walls,
nonlinear rheology, and biochemical transport [114].
Ensuring numerical stability in such multiphysics
systems requires robust discretization strategies, such
as the streamline-upwind/Petrov-Galerkin (SUPG)
method for advection-dominated transport,
log-conformation reformulations for viscoelastic flows,
and partitioned or monolithic solvers for FSI problems.
Ill-conditioned system matrices arising from these
couplings necessitate efficient preconditioning
strategies, such as algebraic multigrid (AMG) solvers,
block-factorization techniques, or physics-informed
preconditioners that exploit the underlying
mathematical structure of the system. [115]
Recent advances in machine learning have introduced a
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promising avenue for accelerating multiscale biofluid
modeling. Data-driven surrogate models, including
neural network-based approximators and Gaussian
process regression, provide an alternative to direct
numerical simulation in scenarios where computational
costs are prohibitive [116]. These approaches have
been particularly effective in capturing subgrid-scale
features, such as microvascular flow patterns or tissue
permeability variations, that would otherwise require
prohibitively fine resolution in traditional models [117].
However, integrating these techniques into a rigorous
computational framework necessitates careful training,
validation, and uncertainty quantification. Machine
learning models must be benchmarked against
experimental data and high-fidelity simulations to
ensure their predictive reliability across physiological
conditions. [118]
Verification and validation remain central pillars in
establishing the credibility of multiscale biofluid
models. Direct comparisons with experimental
measurements—ranging from in vitro microrheological
assays to in vivo imaging modalities such as magnetic
resonance velocimetry (MRV) and Doppler
ultrasound—are essential to assess model fidelity [119].
Physiological complexity demands that these
comparisons extend beyond numerical accuracy to
include biologically relevant metrics, such as shear
stress distributions in arteries or oxygen transport
efficiency in capillary networks. Furthermore,
uncertainty quantification frameworks can help
delineate how parameter variability—whether
stemming from patient-specific vascular geometries or
cellular-scale mechanical properties—propagates
through the model, affecting macroscopic flow
predictions. [120]
The future of multiscale biofluid modeling lies at the
intersection of computational advancements and
biological integration [121]. High-performance
computing (HPC) resources, including massively
parallel architectures, graphics processing units
(GPUs), and specialized co-processors, will continue to
push the frontiers of large-scale simulation.
Concurrently, advances in experimental biology,
particularly single-cell omics and microfluidic assays,
offer unprecedented insight into the microscale
determinants of blood flow and tissue perfusion [122].
The integration of such data into continuum models
holds promise for patient-specific or even
genotype-specific predictive tools, enabling more
precise modeling of pathological conditions such as
aneurysm progression, thrombus formation, or
microcirculatory dysfunction.
In the clinical and biomedical engineering domains,

multiscale biofluid models are poised to play a
transformative role in medical decision support and
device optimization [123]. For instance, patient-specific
computational fluid dynamics (CFD) simulations are
increasingly used to assess surgical interventions, such
as stent placements or vascular graft designs, providing
quantitative predictions of hemodynamic outcomes
[124]. Similarly, biofluid models inform the design of
medical devices, including artificial heart valves and
ventricular assist devices, ensuring optimal
performance under physiologically relevant conditions.
Beyond clinical applications, these models contribute
to fundamental biological discovery, shedding light on
emergent phenomena such as blood clot formation,
immune cell transport, and mechanotransduction
signaling pathways. [125]
Ultimately, the field of multiscale biofluid modeling
exemplifies the intricate interplay between physics,
computation, and biology. The ongoing convergence of
high-fidelity simulation techniques, data-driven
modeling, and high-performance computing will
continue to refine our understanding of physiological
flows, paving the way for new insights and applications
[126]. As these methodologies mature, their transition
from proof-of-concept research to clinical and
biomedical impact will depend on continued efforts in
model refinement, rigorous validation, and
cross-disciplinary collaboration. This evolution will not
only enhance our ability to simulate complex biological
systems but also translate into tangible benefits in
medicine, biotechnology, and healthcare innovation.
[127]
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