
Northern Reviews on Algorithmic Research, Theoretical Computation, and Complexity

Real-time Analytics in the Cloud: Overcoming Latency and
Throughput Challenges for Big Data Streams

Juan Camilo Rojas1

1Universidad del Cauca, Department of Computer Science, Calle, Popayan, Cauca, Colombia.,

ABSTRACT
Real-time analytics in the cloud presents significant challenges in mitigating latency and maintaining high
throughput for big data streams. Achieving reliable performance in such dynamic environments requires a
careful examination of data ingestion protocols, distributed processing frameworks, and resource allocation
policies. One major concern is ensuring that the rapidly incoming data flows are balanced against available
computing and networking capacities, allowing analytics systems to sustain predictable response times even
under variable loads. Another crucial factor lies in the parallelization strategies, where accurate distribution of
tasks across multiple nodes helps reduce both time to process individual records and overall system delays.
Additionally, adaptive buffering mechanisms are essential for reconciling bursty data arrivals, hardware
constraints, and internal scheduling complexities. Advances in cloud orchestration and virtualized compute
clusters have made it possible to dynamically scale resource pools on demand, mitigating sudden throughput
spikes. Methods that incorporate deep performance modeling, iterative optimization, and probabilistic
guarantees can address the complexity of asynchronous data pipelines. When integrated properly, these
approaches can achieve low end-to-end latencies without sacrificing throughput, even when stream velocity
and data volume grow significantly. The purpose of this discussion is to explore the fundamental architectural,
mathematical, and operational techniques that facilitate real-time analytics, offering methods for robust
handling of latency-sensitive big data streams in cloud environments.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
To view a copy of this license, visit https://creativecommons.org/licenses/by-nc/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

© Northern Reviews

1

https://creativecommons.org/licenses/by-nc/4.0/


Northern Reviews on Algorithmic Research, Theoretical Computation, and Complexity Northern Reviews

1 Introduction

The increasing volume and velocity of data streams in
modern computing environments has triggered a surge
in the demand for real-time analytics solutions [1].
The cloud provides a seemingly infinite capacity to
scale computational and storage resources, yet the
simultaneous need for reduced latency and high
throughput remains a technical hurdle. As
organizations and systems progress toward
instantaneous decision-making, any delay caused by
resource contention, network congestion, or suboptimal
scheduling yields missed insights and degraded user
experiences. Consequently, novel methods of allocating
processing power, distributing tasks, and orchestrating
resource utilization have emerged as important
considerations. [2]
Data streams in cloud analytics systems originate from
various devices, sensors, logs, and user-generated
events. These high-velocity streams demand
specialized architectures capable of ingesting,
buffering, and processing massive amounts of data in
near real-time. Traditional batch-oriented frameworks
do not suffice when strict deadlines and
microsecond-level latencies are required [3]. Thus,
stream processing engines have evolved to
accommodate continuous ingestion, with highly
parallel execution topologies spanning many nodes.
The focus extends beyond raw computational power
toward the synchronization strategies that govern data
transfer across network boundaries, ensuring that
partial results are consolidated coherently.
Maintaining predictable performance in such dynamic
conditions relies on an intricate relationship between
queue lengths, transmission rates, scheduling policies,
and memory management [4]. If workloads are
unbalanced or if specific nodes become overloaded,
data accumulation can lead to latency spikes or even
system backpressure. It is critical to ensure that data
flow mechanisms adapt to bursty and unpredictable
arrival patterns, potentially rerouting tasks or
fine-tuning concurrency parameters. A central
dilemma is balancing throughput, which generally
benefits from batching or buffering, against latency,
which decreases when data is processed instantly upon
arrival [5]. This tension underscores the need for
flexible solutions guided by deep theoretical modeling
and practical validation.
Another relevant factor involves fault tolerance and
system reliability. As more nodes participate in
distributed analytics tasks, individual component
failures become more probable [6]. Such failures can
disrupt data streams or compromise analytics outputs

if recovery mechanisms are not immediately initiated.
The design of checkpoints, replication strategies, and
rollback protocols affects latency and throughput,
requiring an equilibrium between redundancy
overheads and time-critical operations. For instance,
introducing checkpoint intervals too frequently can
ensure smaller rollback regions but may harm
throughput due to continuous interruption of data
flows. [7]
Considering these operational complexities, the
architectural design of real-time cloud analytics
solutions must incorporate mechanisms for elasticity
and efficient scaling. When faced with increased data
rates or computational demands, transparent
reallocation of resources becomes necessary. Horizontal
scaling strategies typically involve adding more
distributed workers to the streaming pipeline, whereas
vertical scaling focuses on increasing the power of
existing nodes [8]. However, dynamic scaling also
introduces transient delays and necessitates a warm-up
period before additional resources are fully integrated
into the workflow. Moreover, over-allocation can lead
to resource waste, while under-allocation can degrade
latency and throughput guarantees.
Beyond fundamental system architectures,
performance modeling plays an essential role in
understanding, predicting, and optimizing latency and
throughput [9]. By exploring methods in queuing
theory, probability distributions of arrival rates, and
concurrency control, one can anticipate bottlenecks
before they negatively impact the system.
Sophisticated mathematical constructs are embedded
within elasticity strategies, concurrency optimizations,
and load balancing routines to achieve robust
performance even under heterogeneous and volatile
workloads. In this manner, real-time cloud analytics
solutions evolve from heuristics-driven approaches to
systematically designed frameworks, improving both
reliability and quality of service. [10]
The discussion progresses through several core themes,
beginning with the architectural considerations of data
stream processing and the importance of distributed
design. In-depth attention is then given to scalability
and fault tolerance measures, illustrating how
elasticity can become a double-edged sword when not
carefully calibrated. The exploration moves further
into theoretical modeling, where latency minimization
is analyzed via techniques inspired by continuous-time
and discrete-time formulations [11]. Subsequently,
protocol design for high-velocity ingestion is examined,
focusing on the interplay between network-level and
application-level flow control. Finally, the analysis
presents advanced buffering strategies, highlighting

2



Northern Reviews on Algorithmic Research, Theoretical Computation, and Complexity Northern Reviews

how pipeline feedback loops can adapt to variable
workloads and system states. Together, these aspects
form the foundation for achieving real-time analytics
in a cloud ecosystem where latency-sensitive
applications are becoming the norm. [12]

2 Data Stream Processing Archi-
tecture

Effective data stream processing architecture
underpins the capability to analyze large-scale,
continuous data flows in real time. The guiding
philosophy behind such designs involves decomposing
incoming streams into manageable subsets, scheduling
their processing tasks across multiple distributed
worker nodes, and reassembling partial outputs into
coherent analytics results. This modular approach
leverages pipeline parallelism, data parallelism, or a
combination of both, to facilitate scalable and
low-latency computations. [13]
A typical architecture entails an ingestion layer, which
captures data from external sources and applies
preliminary transformations, filtering, or load
balancing operations. The subsequent layer distributes
these data subsets to parallel execution units where
detailed computations, aggregations, or machine
learning inferences occur. Each node in this parallel
layer coordinates its activities through communication
protocols that synchronize partial results [14].
Misconfigurations in this pipeline can lead to data hot
spots or computational skew, disrupting real-time
performance [15]. Accordingly, load-balancing
mechanisms dynamically rebalance assignments among
worker nodes, preventing local bottlenecks.
Formalizing the end-to-end flow of data requires
controlling multiple parameters, including arrival rate
λ, processing rate µ, and concurrency factor c [16].
Analytical modeling can help predict maximum
sustainable throughput for given values of λ and µ. A
mathematical representation of the system’s capacity
constraint may be expressed as an inequality involving
c. If the architecture is modeled as a set of queues
with service rates µi for each node i, then the
sustained throughput of the entire pipeline, denoted Θ,
satisfies [17]

Θ ≤ min
i

(c× µi) , (1)

where c is determined by parallelization policies.
Balancing the terms on the right-hand side involves
adjusting the concurrency factor across various stages
so that no stage becomes a global bottleneck. [18]
Beyond concurrency, the interconnection topology
plays a substantial role. Centralized topologies

introduce straightforward control mechanisms but can
degrade under high loads if the coordinating node
receives an excessive fraction of communications.
Decentralized or peer-to-peer designs distribute
coordination tasks and reduce single points of failure,
albeit at the cost of more complex synchronization
[19]. One approach to synchronization is the
introduction of barrier nodes that collect partial
computations from multiple sources, apply
transformations, and dispatch results to subsequent
tiers. If such barrier nodes are not adequately scaled,
they can cause undesired backpressure, forcing
upstream operators to slow down.
Guaranteeing fault tolerance is another fundamental
aspect of real-time architecture [20, 21]. Recovery
strategies can be modeled as probabilistic events
triggered by node failures. If pf denotes the
probability of node failure in a certain time interval,
the expected loss in intermediate computation can be
expressed as a function of pf and the complexity of the
recovery procedure. Techniques such as sliding-window
checkpoints and replication-based fault tolerance
mitigate these risks [22]. When a failure occurs, the
system automatically migrates or restarts tasks,
maintaining continuity of analytic functions.
Depending on how these fault tolerance schemes are
integrated, they can either provide swift recovery with
moderate overhead or high overhead with minimal
data loss.
The architectural layer also incorporates dynamic
resource provisioning [23]. If the real-time analytics
pipeline observes a sudden rise in λ, on-demand scaling
can be triggered to add more computational nodes.
This approach requires an intelligent load distribution
mechanism so that newly provisioned nodes receive a
fair portion of the tasks. Such elasticity must be
refined to avoid thrashing, where frequent scaling
decisions degrade performance by constantly
redistributing workloads [24]. The interplay of
concurrency, load balancing, and failover routines
defines the fundamental complexity of stream
processing architectures, dictating how well they can
adapt to the fluctuations of real-world data.

3 Scalability and Fault Tolerance

Scalability in real-time analytics is closely tied to
maintaining low-latency performance under growing
data loads. The cloud enables flexible resource
provisioning, but the intricacies of concurrency control,
load balancing, and failover mechanisms mean that
theoretical scaling does not always translate into linear
performance gains [25]. The complexity arises from the

3



Northern Reviews on Algorithmic Research, Theoretical Computation, and Complexity Northern Reviews

overheads of coordinating multiple distributed nodes,
transferring data among them, and safeguarding work
from unpredictable failures. Predicting the system’s
behavior as more nodes join the cluster requires
quantifying the overhead of synchronization,
communication, and partial result aggregation.
The parallel speedup S of a distributed real-time
pipeline can be modeled by examining how total
execution time T changes with the number of nodes n
[26]. A simplified representation assumes some fraction
α of the workload is strictly serial, while the remaining
fraction is fully parallelizable. The concurrency-limited
speedup is approximated by:

S(n) ≈ 1

α+ 1−α
n + β · n−1

n

, (2)

where β is a term representing communication
overhead that grows with an increasing number of
nodes [27]. Even though theoretical models might
neglect complexities such as network latency
variability, they highlight that unbounded scaling is
rarely feasible. A disproportionate increase in β or α
would eventually hinder further improvements in
throughput.
Fault tolerance strategies impose further constraints on
scalability [28]. Replicating tasks to handle transient
node failures ensures continuous service availability at
the cost of additional computing overhead. Suppose
each node’s state is periodically checkpointed at time
intervals tcp. During a failure, the system rolls back to
the latest checkpoint, incurring a recovery time trc. If
the time between failures follows an exponential
distribution with mean 1

λf
, one can model the total

overhead in real-time analytics as a function of both
checkpoint frequency and failure rate. More frequent
checkpoints reduce ∆, the amount of reprocessing in
the event of a failure, but increase overhead in stable
operation. At scale, optimizing tcp to balance these
factors is pivotal to sustaining both latency guarantees
and high throughput.
To mitigate the complexity of large-scale fault
tolerance, some architectures rely on partial replication
or selective consistency [29]. These techniques replicate
only critical operators or maintain approximate
snapshots of certain data segments. When a partial
replica fails, the system recovers only the relevant
subset, which can accelerate the resumption of normal
operation. However, partial replication schemes
introduce potentially inconsistent states across the
pipeline if not rigorously managed [30]. Some
frameworks address these issues by employing
versioning of data streams at each operator stage and
ensuring that the pipeline can revert to a consistent

version in the event of a failure.
Scalable architectures also leverage hybrid strategies
that combine stateful and stateless operators. Stateless
operators can be dynamically relocated or duplicated
on short notice, as they do not rely on stored context
to continue operation [31]. Stateful operators that
track accumulative metrics, machine learning model
parameters, or streaming windows are more
challenging to recover. Advanced checkpointing or
state replication is essential for ensuring minimal
downtime and consistent, accurate results. Successful
systems dynamically distinguish between the two types
of operators, optimizing resource allocation and
fault-tolerance levels accordingly. [32]
Another consideration for scalability lies in
cross-regional deployments. Distributing resources
across multiple geographic locations can minimize
regional latency for worldwide data sources while
complicating the synchronization of partial results.
Cloud infrastructures offering multiple availability
zones permit data streams to be directed to the
nearest zone for initial processing, then consolidated
with streams from other regions [33]. The multi-region
approach demands robust replication to manage
network failures that interrupt inter-zone
communication. This inherently raises the complexity
of ensuring that results remain consistent and up to
date across the global pipeline.
Overcoming these challenges involves blending
theoretical scaling models with empirical
measurements of system performance in the
production environment [34]. Continuous monitoring
of node health, queue lengths, throughput, and event
time skew ensures that any deviation from expected
behavior triggers corrective measures. Such measures
can include redistributing tasks or reconfiguring
concurrency limits. By balancing the pursuit of
parallel speedup with resilience to failures, it is
possible to implement real-time analytics solutions
that sustain predictable latency and handle growing
stream volumes gracefully. [35]

4 Theoretical Modeling of Latency
Minimization

Latency minimization in real-time analytics revolves
around controlling the time between when data is
produced and when analytic results become available.
Approaching this challenge requires a theoretical
framework that articulates how latency arises from
multiple interdependent factors such as arrival
distributions, service rates, concurrency, queue

4



Northern Reviews on Algorithmic Research, Theoretical Computation, and Complexity Northern Reviews

dynamics, and network delays. Constructing
mathematical models can elucidate how these factors
propagate through the system, providing insights for
designing strategies that minimize the end-to-end
latency while still accommodating high-throughput
requirements. [36]
A fundamental approach is to view the analytics
pipeline as a series of queues, each with a stochastic
arrival process, a service rate, and a queue capacity.
Let Xi denote the inter-arrival times for data at the
i-th queue and Yi the service times at that queue.
These may be assumed to follow probability
distributions FXi

and FYi
with parameters λi and µi.

Even under simplifying assumptions of Poisson arrivals
and exponential service times, predicting latency for
the entire pipeline involves aggregating the waiting
times at each queue in the path [37]. The total latency
can be approximated as

Ltotal ≈
m∑
i=1

(
1

µi − λi

)
, (3)

for an m-stage pipeline subject to λi < µi. This
expression highlights the significance of each stage
maintaining excess capacity to keep delays manageable
[38]. When these queues interconnect, more complex
Markov chain or network-of-queues analyses become
relevant.
Subtle aspects such as concurrent batch processing and
partial parallelism introduce additional variables. In
scenarios where the pipeline partially batches data
before processing, a trade-off emerges between the
improved throughput from batched computations and
the additional waiting time imposed by forming
batches [39]. Let B denote the batch size and δ the
average queuing delay before a batch is initiated. The
average latency can be decomposed into a waiting
component and a service component. Minimizing this
latency is akin to solving an optimization problem over
continuous or discrete values of B [40]. At times, a
Lagrangian multiplier approach is introduced to
formalize the constraints of resource usage, aiming to
minimize

L(B, λ, µ) = Latency(B, λ, µ)+λB×(Resource Overuse(B, λ, µ)),
(4)

where λB is a Lagrange multiplier enforcing a resource
usage constraint.
Another perspective involves deterministic control and
scheduling [41]. Suppose each operator can schedule
tasks in discrete time slots, aiming to complete
computations prior to a specified deadline D. The
scheduling problem can be formulated as minimizing
the makespan subject to concurrency constraints. Let

Tj represent the start time of the j-th job, which
cannot exceed some function of upstream job
completion [42]. Minimizing the maximum finishing
time across all jobs leads to constraints that are
resolved via integer programming or other
combinatorial optimization methods. In large-scale
streaming contexts, approximate greedy or heuristic
algorithms are often used to reduce complexity.
Models that incorporate network-induced delays
expand the scope further [43]. If the system uses
multiple distributed nodes, the time to transfer partial
results from one node to another influences the total
latency. Let rij represent the average data transfer
rate between node i and node j. The expected transfer
time for a data chunk of size C is C

rij
. Incorporating

these network transfer times into the queue-based or
scheduling-based models refines the latency estimates.
When certain links are congested, or if resources are
geographically dispersed, these transfer times become
critical to system performance. [44]
Beyond these canonical models, partial differential
equations can sometimes arise in continuous-time,
spatially distributed contexts. One formulation views
the data stream as a fluid flow with density ρ(t, x) and
velocity v(t, x) in a cloud environment spanning
physical locations x. Then continuity or conservation
laws relate ∂ρ

∂t +∇ · (ρv) = 0. Latency emerges as the
time required for a signal to propagate through this
distributed environment, factoring in the
transformation velocities at each processing node [45].
Although this continuous framework is abstract, it
provides a powerful lens for analyzing large-scale
streaming systems, especially when data must travel
across geographically distributed points before being
aggregated.
The practical application of these theoretical models
involves calibrating parameters and simplifying
assumptions to match actual system conditions.
Arrival processes might not be purely Poisson but
could follow long-tail distributions, and service times
might exhibit heavy-tailed or bursty behavior [46].
Similarly, concurrency levels and network topologies
can fluctuate in real time. Nevertheless, mathematical
frameworks serve as a guide for analyzing and
mitigating latency. Insights from such models inform
the configuration of concurrency parameters, batch
sizes, scheduling policies, and resource allocation
strategies, ensuring that real-time analytics
infrastructures continually adapt to evolving data
traffic patterns. [47, 48]

5



Northern Reviews on Algorithmic Research, Theoretical Computation, and Complexity Northern Reviews

5 Real-Time Ingestion and Stream-
ing Protocols

The ingestion layer in real-time analytics orchestrates
the flow of data from diverse sources into the
processing pipeline. This layer must handle substantial
variability in arrival rates, the presence of out-of-order
events, and the occasional surge of data bursts. The
design of streaming protocols at this stage directly
impacts latency, resource utilization, and the reliability
of analytics outcomes [49]. Ensuring that data packets
or records arrive promptly while preserving their
logical ordering is of paramount importance,
particularly in contexts where time-sensitive metrics
govern downstream processes.
The ingestion layer typically operates at the confluence
of network protocols and application-level flow
management. Low-level protocols can incorporate
Transmission Control Protocol for reliability or custom
solutions that use datagram packets for reduced
overhead [50]. At the application layer, ingestion
protocols often incorporate acknowledgments, flow
control windows, and partitioning strategies that
match the parallelism factor of the downstream
analytics engine. Each data partition is routed
independently, allowing parallelized ingestion paths
and reducing contention at a single choke point. The
concurrency of ingestion threads, denoted cI , can be
tuned to match the downstream pipeline’s capacity
[51]. If cI is too high, the system risks pushing an
excessive volume of partial data into the queueing
layers, triggering backpressure.
Formalizing flow control in ingestion protocols can rely
on feedback loops. An operator monitoring queue
lengths or processing rates sends signals to the
ingestion layer to modulate the pace of data
submission [52]. This can be represented by a control
function f(Q) that adjusts the ingestion rate λI based
on the observed queue size Q. A general expression of
this relationship might be

λI = max(0, λ0 − k · f(Q)), [53] (5)

where λ0 is a baseline ingestion rate, and k is a
tunable parameter. Appropriate choices of f(·) ensure
that the arrival of data never saturates the pipeline’s
capacity. If the pipeline becomes overburdened, the
ingestion rate is throttled, stabilizing the queue sizes
and mitigating increases in latency. [54, 55]
The sequence in which incoming data records are
processed also influences real-time performance. In
ordered ingestion, records for a given data partition
must be processed in the same sequence they were

generated, ensuring consistent states in stateful
operators. However, strictly ordered ingestion can pose
bottlenecks if a subset of records experiences network
delays, stalling the entire partition’s processing
[56, 57]. To mitigate this, some protocols allow partial
reordering or align events according to logical
timestamps rather than strict arrival order. This
approach can demand sophisticated buffering and
alignment logic but can enable higher throughput with
minimal impact on analytics correctness.
Another challenge arises when dealing with varying
data modalities and schemas [58]. Data streams can be
heterogeneous, comprising sensor data, textual logs,
and multimedia content. Streaming protocols must
accommodate these variations, potentially segmenting
or encoding data in ways that balance latency
requirements with data transformation overheads. For
large data objects, chunked transfer approaches can
help overlap data transmission and processing,
reducing the total ingestion latency. [59]
Secure transport protocols add another dimension.
Encrypting data in transit can degrade throughput if
cryptographic operations are not accelerated or
distributed efficiently. Balancing the overhead of
encryption and decryption with the need for low
latency becomes a design decision [60]. Some strategies
selectively encrypt only sensitive fields, while others
rely on specialized hardware to handle cryptographic
workloads at high speed. Either approach emphasizes
that real-time ingestion demands a holistic
understanding of network-level performance, security
requirements, and system concurrency.
Flow management can be viewed as a control-theoretic
problem [61]. Suppose the pipeline aims to maintain a
target average latency L∗. Observing the current
latency L(t), the ingestion system adjusts λI(t)
according to a proportional-integral (PI) controller:

λI(t+∆t) = λI(t)+Kp (L
∗ − L(t))+Ki

∫ t

0

(L∗ − L(τ)) dτ.

(6)
Gains Kp and Ki determine how aggressively the
system reacts to deviations from the target latency
[62]. Tuning these gains improperly may result in
oscillatory or unstable behavior, in which the ingestion
rate is alternately set too high or too low.
Ultimately, the ingestion and streaming protocol layer
establishes the initial conditions for the entire
analytics pipeline. If data arrives in a manner that is
overly delayed, chaotic, or burdensome to the
underlying system, no subsequent optimizations in the
processing layers can fully compensate [63]. Therefore,
carefully designing, calibrating, and monitoring the
ingestion procedures is essential in sustaining real-time

6



Northern Reviews on Algorithmic Research, Theoretical Computation, and Complexity Northern Reviews

performance across volatile workloads and network
conditions.

6 Analytical Approaches to Adap-
tive Buffering

Buffering strategies are central to balancing system
throughput against latency in real-time streaming
environments. Buffers temporarily hold data awaiting
processing, enabling concurrency and smoothing out
transient bursts [64, 65]. However, excessive buffering
inflates latency by delaying the processing of data.
This trade-off necessitates adaptive buffering
mechanisms that dynamically adjust buffer sizes and
policies based on real-time feedback about system
load, network conditions, and processing capacity.
Models of buffering behavior often rely on queue-based
formulations in which a stream of incoming data
arrives at a buffer with a rate λ and departs at a rate
µ [66]. In the simplest M/M/1 model, the average
queue size Q is

E[Q] =
ρ

1− ρ
, (7)

where ρ = λ
µ . As ρ approaches unity, E[Q] grows

without bound. Incorporating finite buffer capacity K
modifies the analysis to an M/M/1/K model, which
yields a maximum capacity for storing data [67]. If the
buffer is full, new arrivals must be discarded or
rerouted, compromising system reliability. The goal of
adaptive buffering is to keep ρ away from critical values
while preserving enough buffer space to handle bursts.
Strategies to dynamically adjust the buffer size or the
service rate can mitigate these risks [68]. Suppose the
system measures the arrival rate λ and adjusts the
effective service rate µ by adding or removing
processing threads. One can define a service rate
function µ(θ) where θ is the number of active workers.
If θ can be increased upon detecting rising queue
length, the system can handle bursts more gracefully
[69]. This approach is represented by a feedback rule
such as

θ(t+∆t) = θ(t) + g(Q(t)), (8)

where g(·) is a control function that modifies θ based
on the current buffer size Q(t) [70]. Careful design of
g(·) is required to avoid oscillations or over-allocation.
In certain cases, it is beneficial to offload partial
computations from overloaded nodes to underutilized
nodes via data migration. The quantity of data to
migrate and the timing of the migration can be
analyzed through dynamic optimization [71]. Let M(t)
be the fraction of data in the buffer that is eligible for
migration at time t. The objective is to minimize a

cost function Φ that combines latency, resource usage,
and network overhead:

min
M(t)

∫ T

0

(L(Q,M(t)) + γ · Cmigrate(M(t))) dt, (9)

where L(·) denotes latency as a function of the buffer
size and migration fraction, and Cmigrate(·) represents
the cost of relocating data. The parameter γ captures
the relative importance of migration overhead versus
latency [72]. Solutions to this optimization rely on
numerical techniques or approximations, since
real-time constraints prevent extended computation of
exact solutions.
Another approach to adaptive buffering employs
predictive analytics. By forecasting future arrival rates
using historical data and machine learning models, the
system can proactively adjust buffer capacities,
concurrency levels, or data partitioning [73]. A
predictive model might analyze daily or seasonal
patterns, or detect anomalies like sudden spikes that
correlate with external triggers. Incorporating
uncertainty into these predictions allows the buffering
policy to prepare for worst-case scenarios without
over-provisioning. Indeed, robust control strategies or
distributionally robust optimization can be adopted to
manage unanticipated changes in the data arrival
process. [74]
Adaptive buffering also entails designing advanced
data eviction policies. In some scenarios, older data is
less valuable, allowing for dropping stale records if the
buffer threatens to overflow. This mechanism can be
modeled by a function e(t) that determines the rate at
which old data is discarded [75]. Although dropping
data can degrade analytics fidelity, it may be
preferable to incurring indefinite queuing delays that
compromise real-time responsiveness. The trade-off
between data loss and timely processing demands a
careful assessment of the analytics objectives [76],
particularly in application domains that prioritize
rapid feedback over historical completeness.
Ongoing monitoring of buffer occupancy, queuing
delay, and system throughput forms a feedback loop
[77]. Controllers, whether heuristic or model-based,
continuously tune buffer-related parameters to
maintain operational targets. Imbalances in arrival
and service rates are quickly detected, prompting the
system to expand concurrency or reduce incoming
traffic. This multi-layer feedback infrastructure
integrates with the overall architecture to ensure that
the streaming pipeline remains responsive despite
fluctuations in data volume or computing availability
[78]. When combined with the ingestion protocols,
fault tolerance strategies, and concurrency models

7



Northern Reviews on Algorithmic Research, Theoretical Computation, and Complexity Northern Reviews

described earlier, analytical approaches to adaptive
buffering help create a robust environment for
real-time big data analytics.

7 Conclusion

Real-time analytics in the cloud demands careful
architectural design, rigorous theoretical modeling, and
adaptive operational strategies to overcome latency
and throughput challenges. The interplay of data
ingestion protocols, distributed processing
mechanisms, and resource allocation policies dictates
how effectively a system can address the dynamic
nature of big data streams [79]. By developing
architectures that emphasize parallelization, one can
mitigate the limitations of sequential bottlenecks, but
the benefits of scaling must be weighed against
communication overhead and fault tolerance overhead.
Under volatile streaming workloads, queueing theory,
scheduling algorithms, and advanced flow control
techniques help maintain efficient operation, but their
assumptions and parameters require continual
refinement to account for real-world complexities.
The balancing act between high throughput and
minimal latency remains a guiding theme, addressed
through buffering strategies, concurrency adjustments,
and dynamic resource provisioning [80]. Theoretical
models, ranging from network-of-queues to continuous
fluid approximations, offer valuable perspectives on
how data traverses large-scale systems. By coupling
these frameworks with empirical observations and
predictive methods, one can systematically tune
system behavior, reducing operational uncertainty
even as data streams experience bursts or follow
nonstationary arrival patterns. Adaptive buffering,
feedback-based ingestion, and selective replication
emerge as key methods for coping with fluctuations in
load while preserving correctness and timeliness of
analytic results. [81]
Successful implementations of real-time cloud analytics
will continue to evolve as data volumes grow in variety,
velocity, and complexity. Cloud platforms introduce
additional dimensions of flexibility through elastic
scaling and multi-region deployment, yet these features
also increase the difficulty of maintaining synchronized
states and coherent analytics outputs. Achieving
reliable, low-latency results requires comprehensive
strategies that integrate fault tolerance, concurrency,
flow control, and resource automation into a consistent
architectural framework. Through robust
mathematical methods, precise engineering, and
iterative experimentation, it becomes feasible to create
systems that deliver timely insights from relentless

data streams, meeting the demands of latency-sensitive
applications while harnessing the elastic capacity of
the cloud. [82]

References

[1] H. He, W. Zhao, S. Huang, G. C. Fox, and
Q. Wang, “Research on the architecture and its
implementation for instrumentation and
measurement cloud,” IEEE Transactions on
Services Computing, vol. 13, pp. 944–957,
September 2020.

[2] J. Huang, J. Zhou, Y. Luo, G. Yan, Y. Liu,
S. Yiping, Y. Xu, H. Li, L. Yan, G. Zhang, Y. Q.
Fu, and H. Duan, “Wrinkle-enabled highly
stretchable strain sensors for wide-range health
monitoring with a big data cloud platform.,” ACS
applied materials & interfaces, vol. 12,
pp. 43009–43017, September 2020.

[3] J. M. Tien, “Internet of things, real-time decision
making, and artificial intelligence,” Annals of
Data Science, vol. 4, pp. 149–178, May 2017.

[4] T. J., R. Garcia, F. Danford, L. Patrizi,
J. Galasso, and J. Loyd, “Big data actionable
intelligence architecture,” Journal of Big Data,
vol. 7, pp. 1–19, November 2020.

[5] A. K. Antunes, E. Winter, J. D. Vandegriff, B. A.
Thomas, and J. W. Bradford, “Profiling
heliophysics data in the pythonic cloud,” Frontiers
in Astronomy and Space Sciences, vol. 9, October
2022.

[6] V. Navale and P. E. Bourne, “Cloud computing
applications for biomedical science: A
perspective,” PLoS computational biology, vol. 14,
pp. e1006144–, June 2018.

[7] D. Melissourgos, H. Gao, C. Ma, S. Chen, and
S. S. Wu, “On outsourcing artificial neural
network learning of privacy-sensitive medical data
to the cloud.,” International Conference on Tools
with Artificial Intelligence : [proceedings].
International Conference on Tools for Artificial
Intelligence, vol. 2021, pp. 381–385, December
2021.

[8] J. Lappin, T. Jackson, G. Matthews, and
C. Ravenwood, “Rival records management
models in an era of partial automation,” Archival
Science, vol. 21, pp. 243–266, January 2021.

8



Northern Reviews on Algorithmic Research, Theoretical Computation, and Complexity Northern Reviews

[9] J. R. L. Kaivo-oja and J. Stenvall, “A critical
reassessment: The european cloud university
platform and new challenges of the quartet helix
collaboration in the european university system,”
European Integration Studies, pp. 9–23,
September 2022.

[10] J. Xu, X. Liu, M. Ma, A. Liu, T. Wang, and
C. Huang, “Intelligent aggregation based on
content routing scheme for cloud computing,”
Symmetry, vol. 9, pp. 221–, October 2017.

[11] A. Simonson, O. Brown, J. Dissen, E. J. Kearns,
K. Szura, and J. Brannock, “Noaa open data
dissemination (formerly noaa big data
project/program),” September 2022.

[12] J. Shuja, R. Ahmad, A. Gani, A. I. A. Ahmed,
A. Siddiqa, K. Nisar, S. U. Khan, and A. Y.
Zomaya, “Greening emerging it technologies:
techniques and practices,” Journal of Internet
Services and Applications, vol. 8, pp. 1–11, July
2017.

[13] A. Kanavos, S. A. Iakovou, S. Sioutas, and
V. Tampakas, “Large scale product
recommendation of supermarket ware based on
customer behaviour analysis,” Big Data and
Cognitive Computing, vol. 2, pp. 11–, May 2018.

[14] M. Nadin and A. Naz, “Architecture as service: a
case of design on demand (dod),” Journal of
Ambient Intelligence and Humanized Computing,
vol. 10, pp. 4751–4769, December 2018.

[15] R. Avula, “Architectural frameworks for big data
analytics in patient-centric healthcare systems:
Opportunities, challenges, and limitations,”
Emerging Trends in Machine Intelligence and Big
Data, vol. 10, no. 3, pp. 13–27, 2018.

[16] H. Wu and G. Li, “Visual communication design
elements of internet of things based on cloud
computing applied in graffiti art schema,” Soft
Computing, vol. 24, pp. 8077–8086, June 2019.

[17] K. A. Butler and T. C. Vance, “Spatial statistics
for big data analytics in the ocean and
atmosphere: Perspectives, challenges, and
opportunities,” September 2022.

[18] C. Choirat, D. Braun, and M.-A.
Kioumourtzoglou, “Data science in environmental
health research,” Current epidemiology reports,
vol. 6, pp. 291–299, July 2019.

[19] J. Xu, P. Yang, S. Xue, B. Sharma,
M. Sanchez-Martin, F. Wang, K. A. Beaty,
D. Elinor, and B. Parikh, “Translating cancer
genomics into precision medicine with artificial
intelligence: applications, challenges and future
perspectives.,” Human genetics, vol. 138,
pp. 109–124, January 2019.

[20] R. Z. Naeem, S. Bashir, M. F. Amjad, H. Abbas,
and H. Afzal, “Fog computing in internet of
things: Practical applications and future
directions,” Peer-to-Peer Networking and
Applications, vol. 12, pp. 1236–1262, March 2019.

[21] M. Kansara, “Cloud migration strategies and
challenges in highly regulated and data-intensive
industries: A technical perspective,” International
Journal of Applied Machine Learning and
Computational Intelligence, vol. 11, no. 12,
pp. 78–121, 2021.

[22] M. L. Katz, “Multisided platforms, big data, and
a little antitrust policy,” Review of Industrial
Organization, vol. 54, pp. 695–716, February 2019.

[23] T. A. A. Alsboui, Y. Qin, R. Hill, and
H. Al-Aqrabi, “Distributed intelligence in the
internet of things: Challenges and opportunities,”
SN Computer Science, vol. 2, pp. 277–, May 2021.

[24] T. Wang, Y. Li, G. Wang, J. Cao, Z. A. Bhuiyan,
and W. Jia, “Sustainable and efficient data
collection from wsns to cloud,” IEEE
Transactions on Sustainable Computing, vol. 4,
pp. 252–262, April 2019.

[25] D. J. Clarke, M. Jeon, D. J. Stein, N. Moiseyev,
E. Kropiwnicki, C. Dai, Z. Xie, M. L.
Wojciechowicz, S. Litz, J. Hom, J. E. Evangelista,
L. Goldman, S. Zhang, C. Yoon, T. Ahamed,
S. Bhuiyan, M. Cheng, J. Karam, K. M. Jagodnik,
I. Shu, A. Lachmann, S. Ayling, S. L. Jenkins,
and A. Ma’ayan, “Appyters: Turning jupyter
notebooks into data-driven web apps,” Patterns
(New York, N.Y.), vol. 2, pp. 100213–100213,
March 2021.

[26] M. Mishra and U. Bellur, “Unified resource
management in cloud based data centers,” CSI
Transactions on ICT, vol. 5, pp. 361–374, April
2017.

[27] N. Baydeti, R. Veilumuthu, and M. Vaithilingam,
“Scalable models for redundant data flow analysis
in online social networks,” Wireless Personal
Communications, vol. 107, pp. 2123–2142, April
2019.

9



Northern Reviews on Algorithmic Research, Theoretical Computation, and Complexity Northern Reviews

[28] R. L. Grossman, “Data lakes, clouds, and
commons: A review of platforms for analyzing
and sharing genomic data,” Trends in genetics :
TIG, vol. 35, pp. 223–234, January 2019.

[29] M. A. Rogers and E. Aikawa, “Cardiovascular
calcification: artificial intelligence and big data
accelerate mechanistic discovery,” Nature reviews.
Cardiology, vol. 16, pp. 261–274, December 2018.

[30] P. Kacsuk, J. Kovács, and Z. Farkas, “The
flowbster cloud-oriented workflow system to
process large scientific data sets,” Journal of Grid
Computing, vol. 16, pp. 55–83, January 2018.

[31] S. Rasool, M. Iqbal, T. Dagiuklas, Z. Ul-Qayyum,
and S. Li, “Reliable data analysis through
blockchain based crowdsourcing in mobile ad-hoc
cloud,” Mobile Networks and Applications, vol. 25,
pp. 153–163, June 2019.

[32] N. Maleki, H. R. Faragardi, A. M. Rahmani,
M. Conti, and J. Lofstead, “Tmar: a two-stage
mapreduce scheduler for heterogeneous
environments,” Human-centric Computing and
Information Sciences, vol. 10, pp. 1–26, October
2020.

[33] H. Ke, D. Chen, T. Shah, X. Liu, X. Zhang,
L. Zhang, and X. Li, “Cloud-aided online eeg
classification system for brain healthcare: A case
study of depression evaluation with a lightweight
cnn,” Software: Practice and Experience, vol. 50,
pp. 596–610, November 2018.

[34] M. L. Florence and D. Suresh, “Enhanced secure
sharing of phr’s in cloud using user usage based
attribute based encryption and signature with
keyword search,” Cluster Computing, vol. 22,
pp. 13119–13130, October 2017.

[35] M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues,
R. L. F. Cunha, and R. Buyya, “Hpc cloud for
scientific and business applications: Taxonomy,
vision, and research challenges,” ACM Computing
Surveys, vol. 51, pp. 8–29, January 2018.

[36] P. R. Baldwin, Y. Z. Tan, E. T. Eng, W. J. Rice,
A. J. Noble, C. J. Negro, M. A. Cianfrocco, C. S.
Potter, and B. Carragher, “Big data in cryoem:
automated collection, processing and accessibility
of em data.,” Current opinion in microbiology,
vol. 43, pp. 1–8, October 2017.

[37] R. K. Barik, C. Misra, R. K. Lenka, H. Dubey,
and K. Mankodiya, “Hybrid mist-cloud systems
for large scale geospatial big data analytics and

processing: opportunities and challenges,”
Arabian Journal of Geosciences, vol. 12, pp. 1–15,
January 2019.

[38] J. A. Lara and S. Aljawarneh, “Special issue on
the foundations of software science and
computation structures,” Foundations of Science,
vol. 25, pp. 1003–1008, March 2019.

[39] S. Titarenko, V. Titarenko, G. Aivaliotis, and
J. Palczewski, “Fast implementation of pattern
mining algorithms with time stamp uncertainties
and temporal constraints,” Journal of Big Data,
vol. 6, pp. 1–34, May 2019.

[40] H. L. Fuchs, A. Shehabi, M. Ganeshalingam, L.-B.
Desroches, B. Y. Lim, K. Roth, and A. Tsao,
“Comparing datasets of volume servers to
illuminate their energy use in data centers,”
Energy Efficiency, vol. 13, pp. 379–392, July 2019.

[41] S. Kamburugamuve, K. Govindarajan,
P. Wickramasinghe, V. Abeykoon, and G. C. Fox,
“Twister2: Design of a big data toolkit,”
Concurrency and Computation: Practice and
Experience, vol. 32, March 2019.

[42] B. Karmakar, S. Das, S. Bhattacharya, R. Sarkar,
and I. Mukhopadhyay, “Tight clustering for large
datasets with an application to gene expression
data,” Scientific reports, vol. 9, pp. 3053–,
February 2019.

[43] J. A. Navas-Molina, E. R. Hyde, J. G. Sanders,
and R. Knight, “The microbiome and big data,”
Current opinion in systems biology, vol. 4,
pp. 92–96, July 2017.

[44] W. Han and Y. Xiao, “Edge computing enabled
non-technical loss fraud detection for big data
security analytic in smart grid,” Journal of
Ambient Intelligence and Humanized Computing,
vol. 11, pp. 1697–1708, July 2019.

[45] J. Guo, K. Qian, G. Zhang, H. Xu, and
B. Schuller, “Accelerating biomedical signal
processing using gpu: A case study of snore sound
feature extraction,” Interdisciplinary sciences,
computational life sciences, vol. 9, pp. 550–555,
September 2017.

[46] A.-M. Mallon, D. A. Häring, F. Dahlke,
P. Aarden, S. Afyouni, D. J. Delbarre, K. E.
Emam, H. Ganjgahi, S. Gardiner, C. H. Kwok,
D. M. West, E. Straiton, S. Haemmerle,
A. Huffman, T. Hofmann, L. J. Kelly, P. Krusche,
M.-C. Laramee, K. Lheritier, G. Ligozio,

10



Northern Reviews on Algorithmic Research, Theoretical Computation, and Complexity Northern Reviews

A. Readie, L. Santos, T. E. Nichols, J. Branson,
and C. Holmes, “Advancing data science in drug
development through an innovative computational
framework for data sharing and statistical
analysis.,” BMC medical research methodology,
vol. 21, pp. 250–, November 2021.

[47] T. Y. Win, H. Tianfield, and Q. Mair, “Big data
based security analytics for protecting virtualized
infrastructures in cloud computing,” IEEE
Transactions on Big Data, vol. 4, pp. 11–25,
March 2018.

[48] M. Kansara, “A comparative analysis of security
algorithms and mechanisms for protecting data,
applications, and services during cloud
migration,” International Journal of Information
and Cybersecurity, vol. 6, no. 1, pp. 164–197, 2022.

[49] C. C. Snow, Øystein D. Fjeldstad, and A. M.
Langer, “Designing the digital organization,”
Journal of Organization Design, vol. 6, pp. 1–13,
June 2017.

[50] A. Doan, P. Konda, G. C. P. Suganthan,
Y. Govind, D. Paulsen, K. Chandrasekhar,
P. Martinkus, and M. Christie, “Magellan: toward
building ecosystems of entity matching solutions,”
Communications of the ACM, vol. 63, pp. 83–91,
July 2020.

[51] P. Kijsanayothin, G. Chalumporn, and R. Hewett,
“On using mapreduce to scale algorithms for big
data analytics: a case study,” Journal of Big
Data, vol. 6, pp. 1–20, November 2019.

[52] M. Lippe, M. Bithell, N. M. Gotts, D. Natalini,
P. Barbrook-Johnson, C. Giupponi, M. Hallier,
G. J. Hofstede, C. L. Page, R. Matthews,
M. Schlüter, P. Smith, A. Teglio, and
K. Thellmann, “Using agent-based modelling to
simulate social-ecological systems across scales,”
GeoInformatica, vol. 23, pp. 269–298, January
2019.

[53] B. W. Nelson, C. A. Low, N. C. Jacobson, P. A.
Areán, J. Torous, and N. B. Allen, “Guidelines for
wrist-worn consumer wearable assessment of heart
rate in biobehavioral research.,” NPJ digital
medicine, vol. 3, pp. 1–9, June 2020.

[54] R. Z. Yousif, S. W. Kareem, and S. M. J.
Abdalwahid, “Enhancing approach for
information security in hadoop,” Polytechnic
Journal, vol. 10, pp. 81–87, June 2020.

[55] S. Shekhar, “Integrating data from geographically
diverse non-sap systems into sap hana:
Implementation of master data management,
reporting, and forecasting model,” Emerging
Trends in Machine Intelligence and Big Data,
vol. 10, no. 3, pp. 1–12, 2018.

[56] A. Shemshadi, Q. Z. Sheng, Y. Qin, A. Sun,
W. E. Zhang, and L. Yao, “Searching for the
internet of things: where it is and what it looks
like,” Personal and Ubiquitous Computing,
vol. 21, pp. 1097–1112, July 2017.

[57] R. Avula, “Optimizing data quality in electronic
medical records: Addressing fragmentation,
inconsistencies, and data integrity issues in
healthcare,” Journal of Big-Data Analytics and
Cloud Computing, vol. 4, no. 5, pp. 1–25, 2019.

[58] B.-G. Chun, T. Condie, Y. Chen, B. Cho,
A. Chung, C. Curino, C. Douglas, M. Interlandi,
B. Jeon, J. Jeong, G. Lee, Y. Lee, T. Majestro,
D. Malkhi, S. Matusevych, B. Myers,
M. Mykhailova, S. Narayanamurthy, J. Noor,
R. Ramakrishnan, S. Rao, R. Sears, B. Sezgin,
T. Um, J. Wang, M. Weimer, and Y. Yang,
“Apache reef: Retainable evaluator execution
framework,” ACM Transactions on Computer
Systems, vol. 35, pp. 5–31, May 2017.

[59] J. Rong, T. Qin, and B. An, “Competitive cloud
pricing for long-term revenue maximization,”
Journal of Computer Science and Technology,
vol. 34, pp. 645–656, May 2019.

[60] L.-H. Hung, E. Straw, S. Reddy, R. Schmitz,
Z. Colburn, and K. Y. Yeung, “Cloud-enabled
biodepot workflow builder integrates image
processing using fiji with reproducible data
analysis using jupyter notebooks.,” Scientific
reports, vol. 12, pp. 14920–, September 2022.

[61] W. Li, Y. Ding, Y. Yang, R. S. Sherratt, J. H.
Park, and J. Wang, “Parameterized algorithms of
fundamental np-hard problems: a survey,”
Human-centric Computing and Information
Sciences, vol. 10, pp. 1–24, July 2020.

[62] H. Fröhlich, R. Balling, N. Beerenwinkel,
O. Kohlbacher, S. Kumar, T. Lengauer, M. H.
Maathuis, Y. Moreau, S. A. Murphy, T. M.
Przytycka, M. Rebhan, H. L. Röst, A. Schuppert,
M. Schwab, R. Spang, D. J. Stekhoven, J. Sun,
A. Weber, D. Ziemek, and B. Zupan, “From hype
to reality: data science enabling personalized
medicine,” BMC medicine, vol. 16, pp. 150–150,
August 2018.

11



Northern Reviews on Algorithmic Research, Theoretical Computation, and Complexity Northern Reviews

[63] J. Chen and H. Wang, “Guest editorial: Big data
infrastructure ii,” IEEE Transactions on Big
Data, vol. 4, pp. 299–300, September 2018.

[64] M. Barika, S. Garg, A. Y. Zomaya, L. Wang,
A. van Moorsel, and R. Ranjan, “Orchestrating
big data analysis workflows in the cloud: Research
challenges, survey, and future directions,” ACM
Computing Surveys, vol. 52, pp. 1–41, September
2019.

[65] M. Kansara, “A structured lifecycle approach to
large-scale cloud database migration: Challenges
and strategies for an optimal transition,” Applied
Research in Artificial Intelligence and Cloud
Computing, vol. 5, no. 1, pp. 237–261, 2022.

[66] A. Al-Sinayyid and M. Zhu, “Job scheduler for
streaming applications in heterogeneous
distributed processing systems,” The Journal of
Supercomputing, vol. 76, pp. 9609–9628, March
2020.

[67] R. Parry and R. Bisson, “Legal approaches to
management of the risk of cloud computing
insolvencies,” Journal of Corporate Law Studies,
vol. 20, pp. 421–451, February 2020.

[68] J. Zou, A. Iyengar, and C. Jermaine,
“Architecture of a distributed storage that
combines file system, memory and computation in
a single layer,” The VLDB Journal, vol. 29,
pp. 1049–1073, February 2020.

[69] A. Rejeb, J. G. Keogh, and K. Rejeb, “Big data in
the food supply chain: a literature review,”
Journal of Data, Information and Management,
vol. 4, pp. 33–47, January 2022.

[70] E. Hughes-Cromwick and J. L. Coronado, “The
value of us government data to us business
decisions,” Journal of Economic Perspectives,
vol. 33, pp. 131–146, February 2019.

[71] T. Kong, D. Choi, G. Lee, and K. Lee, “Air
pollution prediction using an ensemble of dynamic
transfer models for multivariate time series,”
Sustainability, vol. 13, pp. 1367–, January 2021.

[72] L. Jorm, K. McGrail, J. C. Victor, K. H. Jones,
D. V. Ford, and T. Churches, “Secure data
analysis environments: can we agree on criteria
for “appropriate secure access” to linked health
data?,” International Journal of Population Data
Science, vol. 3, September 2018.

[73] A. Raglin, S. Metu, S. Russell, and P. Budulas,
“Implementing internet of things in a military
command and control environment,” SPIE
Proceedings, vol. 10207, pp. 1020708–, May 2017.

[74] A. Mandawat, L. Eberly, and W. L. Border, “A
cardio-oncology data commons: Lessons from
pediatric oncology,” Current cardiology reports,
vol. 21, pp. 128–128, September 2019.

[75] W. Chen, Q. Zhang, M. Jin, and J. Yang,
“Research on online consumer behavior and
psychology under the background of big data,”
Concurrency and Computation: Practice and
Experience, vol. 31, October 2018.

[76] R. Avula, “Overcoming data silos in healthcare
with strategies for enhancing integration and
interoperability to improve clinical and
operational efficiency,” Journal of Advanced
Analytics in Healthcare Management, vol. 4,
no. 10, pp. 26–44, 2020.

[77] S. Garg, R. Ahuja, R. Singh, and I. Perl,
“Gmm-lstm: a component driven resource
utilization prediction model leveraging lstm and
gaussian mixture model,” Cluster Computing,
vol. 26, pp. 3547–3563, September 2022.

[78] M. N. İNCE, M. GÜNAY, and J. LEDET,
“Lightweight distributed computing framework for
orchestrating high performance computing and
big data,” Turkish Journal of Electrical
Engineering and Computer Sciences, vol. 30,
pp. 1571–1585, May 2022.

[79] I. A. Ibrahim and M. A. Bassiouni, “Improvement
of job completion time in data-intensive cloud
computing applications,” Journal of Cloud
Computing, vol. 9, pp. 1–20, February 2020.

[80] R. Zheng, J. Jiang, X. Hao, W. Ren, F. Xiong,
and Y. Ren, “bcbim: A blockchain-based big data
model for bim modification audit and provenance
in mobile cloud,” Mathematical Problems in
Engineering, vol. 2019, pp. 5349538–, March 2019.

[81] J. Xu and B. Palanisamy, “Optimized
contract-based model for resource allocation in
federated geo-distributed clouds,” IEEE
Transactions on Services Computing, vol. 14,
pp. 530–543, March 2021.

[82] R. Moradi and K. M. Groth, “On the application
of transfer learning in prognostics and health
management,” Annual Conference of the PHM
Society, vol. 12, pp. 8–8, November 2020.

12


	Introduction
	Data Stream Processing Architecture
	Scalability and Fault Tolerance
	Theoretical Modeling of Latency Minimization
	Real-Time Ingestion and Streaming Protocols
	Analytical Approaches to Adaptive Buffering
	Conclusion

